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Abstract: We consider a contact problem of planar elastic bodies. We adopt
Coulomb friction as (an implicitly defined) constitutive law. We will investi-
gate highly simplified lumped parameter models where the contact boundary
consists of just one point. In particular, we consider the relevant static and
dynamic problems. We are interested in numerical solution of both problems.
Even though the static and dynamic problems are qualitatively different, they
can be solved by similar piecewise-smooth continuation techniques. We will
discuss possible generalizations in order to tackle more complex structures.
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1. Introduction

Let us consider elastic two-dimensional bodies in mutual contact. The relevant
mathematical description consists in modeling of both non-penetration conditions
and a friction law. The widely accepted Coulomb friction law represents a serious
mathematical and numerical problem. We adopt a discretization via (mixed) Finite
Element Method (FEM). The key parameters are degrees of freedom and the number
of nodes on the contact boundary. The problems depend on a positive parameter
called friction coefficient F .

We have in mind numerical solution of both

1. the static, parameter dependent contact problems with Coulomb friction, see
e.g. [7, 6, 4, 11, 5],

2. the dynamic (i.e. time dependent) contact problems with a friction, see e.g. [9]
and with Coulomb friction, [10].
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The dynamic solvers use time-stepping schemes (with a fixed stepsize). As a rule,
the schemes have to be stabilized. The above authors advocate the stabilization via
a mass redistribution.

In this contribution we consider a case-study problem with just one point on
the contact boundary. We analyze both static and dynamic formulations, see [7]
and [10]. You may think of toy-problems (lumped parameter models) which reflect
the reality qualitatively.

The plan is as follows: In Section 2, we consider the static problem (both the case-
study and the example of a real structure). The problem is parameter-dependent in
order to model a continuous evolution. The natural numerical tools are continuation
(path-following) techniques. The underlying message is: If we learn to solve the
toy-problem we get important clues for solving large scale problems. In Section 3 we
formulate the dynamic case-study problem. We discuss two numerical techniques:
An event-driven algorithm (Section 4) and a time-stepping algorithm (Section 5). In
Conclusions (Section 6), we hint at the fact that continuation techniques (Section 2)
and, because time is also a parameter, event-driven algorithms and time-stepping
algorithms (Section 4 and Section 5) are closely related.

2. The static problem

As a case study, we consider a static finite element model of Coulomb friction
with one contact point, see [7]: Find (uν , uτ , λν , λτ )

T ∈ R
4



















buν − cuτ − fν − λν = 0 ,

−cuν + buτ − fτ − λτ = 0 ,

λν − P(−∞,0](λν − ruν) = 0 ,

λτ − P[−F|λν |,F|λν |](λτ − ruτ) = 0 .

(1)

Parameters of the model are as follows: The nonnegative friction coefficient F , and
the stiffness matrix A,

A =

[

b c
c b

]

, b = −
λ + 3ν

2
, c =

λ+ ν

2
,

where λ and ν are positive parameters (Lamé coefficients). The operators P(−∞,0]

and P[−F|λν |,F|λν |] are piecewise linear projectors, see Figure 1. The arguments of
both projectors depend on a positive parameter r, that can be arbitrary but fixed.

The system (1) models one linear finite element which rests on a rigid foundation,
see Figure 2. The problem is as follows: Given a load f = (fν , fτ )

⊤ ∈ R
2, the normal

and the tangential load components, find

• uν and uτ i.e., the normal and the tangential displacement

• λν and λτ i.e., the normal and the tangential stress components.
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Figure 1: Projectors x 7−→ P(−∞,0](x), x 7−→ P[−η,η](x), η = F|λν|.
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Figure 2: FEM interpretation.

Figure 3: Contact of two elastic bodies Ω1 (the upper body) and Ω2, along the contact
boundary. The loading is due to the surface traction. Discretization: n = 1320
(degrees od freedom), m = 30 (number of nodes on the contact boundary). On the
right: Resulting deformation.
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The system (1) is solvable for any given load f ∈ R
2 nevertheless the solution may not

be unique. In [6], we proposed path following techniques to find non-unique solutions.
The aim was to investigate the model (1) subject to a parameter-dependent force
i.e., α 7→ fν(α) and α 7→ fτ (α). We developed a numerical technique based on
piecewise-smooth continuation. Starting from this comparatively simple model (1)
we generalized the continuation technique for problems of practical interest that
involve several thousands elements, see [4, 5]. We also refer to [11] for an alternative
approach.

Just to illustrate the technique, we consider the example formulated in [4], see
Figure 3. The aim is to investigate dependence of this particular contact problem
on the friction coefficient F . The relevant continuation technique is described in [5].
For an illustration of this new technique see Figure 4 and Figure 5. Note that there
are three basic contact modes: no contact, contact-stick and contact-slip, see
e.g. [6, 4].

3. The dynamic problem

As a case study, we consider a dynamic finite element model of Coulomb friction
with one contact point, see [10] and Figure 2: We seek for time-dependent functions
uν, uτ , λν , λτ : [0, T ] → R such that

M

[

u′′
ν(t)

u′′
τ (t)

]

= A

[

uν(t)
uτ(t)

]

+

[

fν(t)
fτ (t)

]

+

[

λν(t)
λτ (t)

]

(2)

−λν(t) ∈ NR
1

−

uν(t) (3)

λτ (t) ∈ F λν(t) Signu
′
τ (t) (4)
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Figure 4: The solution path related to the nodal point No19 consists of three
branches. They are initialized by points marked by asterisks. Parameter is β = F ,
the friction coefficient. On the right: An illustrations of the adaptive stepsize re-
finement of the algorithm. The curves interpretations: solid (no contact), dashed
(contact-stick) and dash-dotted (contact-slip).
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Figure 5: The solution path related to the nodal point No20 (on the left) and the
nodal point No21 (on the right). Parameter: β = F . The curves interpretations:
solid (no contact), dashed (contact-stick) and dash-dotted (contact-slip).

almost everywhere (a.e.) in [0, T ]. The initial value condition
[

uν(0)
uτ(0)

]

= u0 ,

[

u′
ν(0)

u′
τ (0)

]

= v0 (5)

is satisfied for any given u0 ∈ R
2, v0 ∈ R

2. The unknowns of the model are

• uν(t) and uτ(t) i.e., the normal and the tangential displacement

• λν(t) and λτ (t) i.e., the normal and the tangential stress components.

The data are the given fν(t) and fτ (t) i.e., normal and tangential load components.
Parameters of the model: The nonnegative friction coefficient F , and the mass

and stiffness matrices

M =

[

a 0
0 a

]

, A =

[

b c
c b

]

,

a =
ρl2

12
, b = −

λ + 3ν

2
, c =

λ+ ν

2
,

where ρ, l, λ and ν are positive parameters (the density, the diameter of the element,
and two Lamé coefficients).

The symbols Sign and NR
1

−

denote multivalued mappings Sign : R ⇉ R and

NR
1

−

: R ⇉ R called signum and normal cone, respectively, see e.g. [1]. We skip
formal definitions. Instead, we introduce equivalent formulations via variational
inequalities:

The condition (3) is called the complementarity condition. It can be interpreted
as the no contact or the contact

{

λν(t) = 0 for uν(t) < 0 . . . no contact

λν(t) ≤ 0 for uν(t) = 0 . . . contact
(6)
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with the rigid foundation. The condition (4) reads as











λτ (t) = F λν(t) for u′
τ (t) > 0

λτ (t) = −F λν(t) for u′
τ (t) < 0

|λτ (t)| ≤ −F λν(t) for u′
τ (t) = 0

(7)

One can easily conclude that

1. In the case of no contact in (6), the condition (7) yields λν(t) = λτ (t) = 0

2. In the case of contact in (6), the condition (7) can be interpreted as











λτ (t) = F λν(t) for u′
τ (t) > 0 . . . contact-slip

λτ (t) = −F λν(t) for u′
τ (t) < 0 . . . contact-slip

|λτ (t)| ≤ −F λν(t) for u′
τ (t) = 0 . . . contact-stick

(8)

The aim is to solve the initial value problem (2)–(5). We consider two kinds of
algorithms: In Section 4, we introduce an event driven algorithm and in Section 5
we sketch a time-stepping algorithm.

In the following, let us relabel the state variables x1 = uν , x2 = u′
ν , x3 = uτ ,

x4 = u′
τ .

4. The event-driven algorithm

The idea is a dynamical simulation of the particular solution modes contact

and no contact. They are defined by different systems of ordinary differential equa-
tion (i.e., different vector fields). Then the solution modes should be concatenated
according certain rules (continuity of displacements).

The mode contact is modeled as a Filippov system, see e.g. [3, 1]. Details can be
found in Supplement 7, see the system (12). In this solution mode we have λν(t) < 0
on an open time interval t ≥ 0. It can be shown that x1(t) = x2(t) = 0, and
λν(t) = −c x3(t)− fν(t) ≤ 0. We distinguish two cases:

• If x1(t) = x2(t) = 0 and x4(t) = 0 then the body is in contact-stick regime,

• If x1(t) = x2(t) = 0 and x4(t) 6= 0 then the body is in contact-slip regime.

The dynamical simulation of the contact mode is bases on the Filippov convex method

and its modifications, [3, 1]. In forthcoming experiments we used the open-source
software [12] which is based on the MATLAB ODE suit [15] with an adaptive stepsize.

The mode no contact is modeled as two coupled linear oscillators where λν(t) =
λτ (t) = 0, x1(t) < 0 on an open time-interval t ≥ 0, see Supplement 7, the system
(14)&(15).

The coupling of the modes contact and no contact can be viewed as an hy-

brid impact model, [1]. Why do we call the algorithm an event-driven algorithm?
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Changing particular modes is linked to the sign-changes of functions t 7→ x1(t),
t 7→ λν(t) ≡ −c x3(t)− fν(t) and t 7→ x4(t). The MATLAB ODE suit [15] provides
an efficient tool called event location to localize sign-changes of functionals in space
and time.

The given acting force fν and fτ in (2) may be time dependent. In following
examples we let the tangential component fτ = fτ (t) to be periodic and the normal
component fν to be fixed. We model the action of the craftsman instrument called
‘Jack plane’.

Example 4.1 Contact only

Data: a = 1, b = −1.2, c = 1, F = 0.4,
a periodic forcing: fτ (t) = sin(ωt), ω = 1/6, fν(t) ≡ fν = 1.3, a ‘Jack plane’ model.

The initial condition: [0, 0, 0, 0.1]. The time-span: [0, T ], T = 10 · 2π
ω
.

The relevant results are shown in Figure 6 and Figure 7. The value of fν is sufficiently
large and the instrument rests on the foundation for all time.
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Figure 6: fν = 1.3. On the left: A phase plot of x4 versus x3. On the right: A plot
of x4 versus time t. Contact regime: If x4(t) = 0 then contact-stick. If x4(t) 6= 0
then contact-slip.

Example 4.2 Coupling of the modes contact and no contact

Data: a = 1, b = −1.2, c = 1, F = 0.3,
a periodic forcing: fτ (t) = sin(ωt), ω = 1/6, fν(t) ≡ fν = 0.5, a ‘Jack plane’ model.

The initial condition: [0, 0, 0, 0.1]. The time-span: [0, T ], T = 10 · 2π
ω
.

The relevant results are shown in Figure 8 and Figure 9. This time fν is small enough
and the instrument is lifted from the foundation for particular time periods. The
‘Jack plane’ is bouncing on the foundation.
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Figure 7: fν = 1.3. A plot of λν versus time t. Note that λν(t) < 0 characterizes the
contact mode. On the right: A plot of λτ versus time t, a zoom.
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Figure 8: fν = 0.5. On the left: A phase plot of x1 versus x2. Observe that x1 ≤ 0,
an impact at x1 = 0. On the right: A phase plot of x3 versus x4. Legend: contact
... black, no contact ... gray.
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Figure 9: fν = 0.5. On the left: A plot of λν versus time t. On the right: A plot of
λτ versus time t, a zoom. Legend: contact ... black, no contact ... gray.
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5. The time-stepping algorithm

Consider the initial value problem (2)–(5). In [10], there was proposed a natu-
ral time discretization of this problem via mid-point rule with a fixed stepsize dt.
At each time step, the algorithm identifies the solution mode (namely, the options
contact, contact − stick and contact − slip) and propose the solution update.
The identification is unique provided that the stepsize dt is sufficiently small. (Note
that we used the scheme without mass-redistribution, [10]). Let us run the mid-point
algorithm using the same data as in Example 4.1. We expect qualitatively similar
plots as in Figure 6 and Figure 7.

Example 5.3 Contact only, see Example 4.1

Data: a = 1, b = −1.2, c = 1, F = 0.4, time increment dt = 0.001,
a periodic forcing: fτ (t) = sin(ωt), ω = 1/6, fν(t) ≡ fν = 1.3, a ’Jack plane’ model.

The initial condition: [0, 0, 0, 0.1]. The time-span: [0, T ], T = 10 · 2π
ω
.

In Figure 10, on the left, there is a plot of initial stages of x4 computed via the
mid-point rule. Note that corresponding zoom in Figure 6, on the right, computed via
the event-driven algorithm would look much the same. Remarkable are the run-time
differences: 2495.6 seconds (the mid-point rule) vs 2.3 seconds (the event-driven
algorithm). The zoom in Figure 10 reveals that the numerical solution oscillates
between the stages contact-slip and contact-stick (see the isolated dots). In
that case, the remedy is to guide the solution to remain in regime contact-stick. It
can be done by adapting slightly the original code in [10] e.g., in case contact-stick
we set directly x4 = 0. We call the resulting algorithm the stabilized mid-point rule.
In Figure 11, we plot x4 versus t computed via stabilized mid-point rule. Due to the
setting of Example 5.3, i.e. contact only, we have just two competing modes namely
contact-slip and contact-stick depicted by dashed and solid curves. Elapsed
time was 64.841882 seconds (stabilized mid-point rule, 0 ≤ t ≤ 380, dt = 0.001).

The above stabilization technique can be related to the approach by [2, 14].
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Figure 10: fν = 1.3, time increment dt = 0.001. On the left: The solution via
mid-point rule. A plot of x4 versus t as 0 ≤ t ≤ 8. On the right: a zoom.
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Figure 11: fν = 1.3, time increment dt = 0.001. The solution via stabilized mid-
point rule. Legend: contact-stick ... solid, contact-slip ... dashed curves. On
the left: the initial stages 0 ≤ t ≤ 9. On the right: The periodic pattern of the limit
set, 250 ≤ t ≤ 350.

6. Conclusions

We considered simplified models (i.e., lumped parameter models) for both the
static, see (1), and the dynamic friction model, see (2)–(5).

The static model (1) is piecewise smooth, parameter dependent. It can be solved
by continuation techniques. The dynamic model (2)–(5) is piecewise smooth dynam-
ical system where time t is a parameter. The approaches to numerical solution (the
event-driven algorithm in Section 4 and the time-stepping algorithm in Section 5)
can be viewed as approximations of discrete time, piecewise-smooth dynamical sys-
tems. Both the static and dynamic problems can be solved by similar (continuation)
techniques in spite of the fact that both models are qualitatively different. The con-
tinuation techniques for solving the static case-study model (1) can be extended to
higher dimensions. We hope for such an extension for dynamic contact problems
which would deal with structures as in Figure 3.

Comparison of the event-driven algorithm and the time-stepping algorithm: In [8],
we compared an event-driven algorithm (based on the software in [12]) and a time-
stepping algorithm (based on implicitly defined law of Coulomb friction, [14, 2, 13])
for the Dry-friction model (in 2-D) i.e., the model of a slide fastener. The comparison
in [8] argue strongly for an event-driven algorithm:

1. In [12], there is implemented an adaptive stepsize refinement. As a conse-
quence, the solver reduces the computational costs.

2. The solution modes are clearly distinguished and precisely localized (in case of
Dry friction we distinguish just contact − slip and contact − stick modes).

Coming back to the algorithms formulated in Section 4 and Section 5, respec-
tively: The event-driven algorithm seems to be superior to the time-stepping algo-
rithm. The argument for this statement is the same as the above. Mind you the
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failure in Figure 10, on the left. It can be fixed, see Figure 11. Nevertheless, there
is a space for improvements as the mode identification is concerned.

On the other hand, the event-driven algorithm uses built-in MATLAB routines
namely, the routines concerning the stepsize control, see [15]. When thinking about
possible generalizations of event-driven algorithms in order to deal with real struc-
tures as in Figure 3, one has to programm adaptive step refinement or event-location
routines himself. In principle, it is possible. In the continuation context, the key
algorithms are already developed, see Figure 4, on the right.

7. Supplement: Modelling the modes contact and no contact

This supplement pertains to Section 4, giving particular details. Basically, we
shall follow [8].

7.1. The contact mode

Assume that the body is in contact with the rigid foundation at a particular time
t0 ≥ 0 and on an open non-empty time interval I(t0). It means that the equations (2)
together with the conditions {λν(t) ≤ 0 , uν(t) = 0} and (8) are satisfied for t ∈ I(t0).

The system (2) consists of two equations:

au′′
ν(t) = buν(t) + cuτ (t) + fν(t) + λν(t) (9)

au′′
τ(t) = cuν(t) + buτ (t) + fτ (t) + λτ (t) (10)

Since uν(t) = 0 for all t ∈ I(t0) then u′′
ν(t) = 0 for all t ∈ I(t0). The equation (9)

reduces to an algebraic constraint:

λν(t) = −c uτ (t)− fν(t) , λν(t) ≤ 0 (11)

for t ∈ I(t0). From (10) and (8), we conclude that

1. If u′
τ > 0 then λτ = Fλν, see (8). The equations (10)&(11) yield

u′′
τ =

b− Fc

a
uτ +

1

a
(fτ − Ffν)

2. If u′
τ < 0 then λτ = −Fλν , see (8). Due to the equations (10)&(11)

u′′
τ =

b+ Fc

a
uτ +

1

a
(fτ + Ffν)

3. If u′
τ = 0 then |λτ | ≤ −Fλν , see (8). In a spirit of the Filippov convex

method [3, 1] we consider the convex combination of the right-hand sides of
the above equations

u′′
τ =

(1− 2λ)Fc+ b

a
uτ +

1

a
fτ +

1− 2λ

a
Ffν , λ ∈ [0, 1] .

73



Let us relabel the state variables x1 = uν , x2 = u′
ν , x3 = uτ and x4 = u′

τ .
Accordingly, we introduce vector fields F1 : R

5 → R
5 and F2 : R

5 → R
5 as

F1 =

















0
0
x4

b−Fc

a
x3 +

1

a
(fτ − Ffν)

1

















, F2 =

















0
0
x4

b+ Fc

a
x3 +

1

a
(fτ + Ffν)

1

















where fτ = fτ (t) = fτ (x5), fν = fν(t) = fν(x5). The vector fields F1 and F2

are autonomous (which was the condition to use the ready-made software [12]).
Nevertheless, we can recover time t easily.

Moreover, we define the level-set operator H12 : R
5 → R,

H12(x) = x4 .

The fields F1 and F2, respectively, are defined on

S1 =
{

x ∈ R
5 : H12(x) > 0

}

end S2 =
{

x ∈ R
5 : H12(x) < 0

}

.

The set Σ12 = {x ∈ R
5 : H12(x) = 0} is the discontinuity surface. We consider the

Filippov system

x′ =

{

F1(x) for x ∈ S1

F2(x) for x ∈ S2
(12)

For a given initial condition x0 ∈ R
5, the Filippov’s convex method, e.g. [3, 1, 12],

gives the solution of the system (12) on a time span for which the body stays in
contact with the rigid obstacle i.e.,

λν(t) = −c x3(t)− fν(t) ≤ 0 .

It means that the initial condition x0 ∈ R
5 has to satisfy

x0 =
[

0, 0, x0
3, x

0
4, t

0
]⊤

, −c x0
3(t

0)− fν(t
0) < 0 . (13)

7.2. The no contact mode

Recall the original meaning of the state variables x1 = uν , x2 = u′
ν, x3 = uτ

and x4 = u′
τ . Assume that the body is not in contact with the rigid foundations at

a particular time t0 ≥ 0 and on an open non-empty time interval I(t0). Due to (6)
(the option no contact) we can claim that {λν(t) = 0, uν(t) < 0} for t ∈ I(t0). We
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already noted that λν(t) = λτ (t) = 0 for t ∈ I(t0), as a consequence of (7). Hence,
the system (2) reduces to equations

au′′
ν(t) = buν(t) + cuτ(t) + fν(t) (14)

au′′
τ (t) = cuν(t) + buτ (t) + fτ (t) (15)

for t ∈ I(t0) provided that uν(t) < 0. We formulate (14)&(15) as an autonomous
system adding an extra equation t′ = 1. Coming back to the variable x ∈ R

5 we
introduce the vector field F3 : R

5 → R
5 as

F3 =























x2

b

a
x1 +

c

a
x3 +

1

a
fν(x5)

x4

c

a
x1 +

b

a
x3 +

1

a
fτ (x5)

1























.

The field F3 is defined on

S3 =
{

x ∈ R
5 : x1 < 0

}

.
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[4] Haslinger, J., Janovský, V., and Kučera, R.: Path-following the static contact
problem with coulomb friction. In: J. Brandts, S. Korotov, M. Kř́ıžek, J. Š́ıstek,
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