
Conference Applications of Mathematics 2015, in honor of the birthday
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Abstract: Error-controlled adaptive meshfree methods are presented for both
global error measures, such as the energy norm, and goal-oriented error mea-
sures in terms of quantities of interest. The meshfree method chosen in this
paper is the reproducing kernel particle method (RKPM), since it is based
on a Galerkin scheme and therefore allows extensions of quality control ap-
proaches as already developed for the finite element method. Our approach
of goal-oriented error estimation is based on the well-established technique us-
ing an auxiliary dual problem. To keep the formulation general and to add
versatility, a multi-space approach is used, where the dual problem is solved
numerically using a different approximation space than the one employed in
the associated primal problem. This can be realized with meshfree methods at
no additional cost. Possible merits of this multi-space approach are discussed
and an illustrative numerical example is presented.
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1. Introduction

In this paper, we confine our attention to error control of Galerkin-type mesh-
free methods, more specifically to error control of the reproducing kernel particle
method (RKPM). From an error control point of view this has the advantage that
error estimation techniques, as extensively developed for the finite element method,
can generally be transferred to RKPM as they are both Galerkin methods.

Although meshfree methods offer several obvious advantages for a posteriori er-
ror control, the development of error estimators is surprisingly still in an early stage.
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To date, the largest class of error estimators for meshfree methods constitutes of
recovery-type error estimators. Mathematically more sound error estimators can
be found in the class of residual-type error estimators. By construction, such error
estimators have the virtue to offer error bounds. However, owing to several pes-
simistic inequalities that are usually used in their derivations, the error bounds of
residual-type error estimators are typically not as sharp as the error approximations
of recovery-type error estimators. Subclasses of this type of error estimation pro-
cedures constitute of explicit-type estimators, where the residual is used directly in
the line of the pioneering works by Babuška & Rheinboldt [3, 4], and implicit-type
estimators, where auxiliary local problems based on the residual are solved in the
line of Bank & Weiser [6].

To the knowledge of the authors, in meshfree methods each of these subclasses
currently consists of one representative. An explicit residual-type error estimator
was developed by Duarte & Oden [8] for the meshfree method by the same authors,
called h-p clouds. More recently, Vidal et al. [14] presented an implicit residual-
type error estimator, where the auxiliary local problems are solved on patches of the
integration cells so that no fluxes need to be taken into account. The authors are
also the first ones who derived goal-oriented error estimators for meshfree methods.

In this paper, we follow Rüter & Chen [11] to add a new error estimator to the
class of implicit residual-type error estimators for meshfree methods based on the
finite element counterpart as introduced by Bank & Weiser [6] and further developed
by Ainsworth & Oden [1] and others, see also Babuška & Strouboulis [5]. The error
estimator presented in this paper is first derived for an energy-norm error control
and is later extended to goal-oriented error estimation. It takes advantage of two key
properties of meshfree methods. The first one is the high regularity of the meshfree
solution which is reflected in a smooth stress field and thus in a smooth traction
field. The second one is the independence of the particles from the integration cells
which makes it possible to use different discretizations for the primal and for the
dual problem, as used for the goal-oriented error estimator, at no additional cost.
This multi-space approach thus bypasses the tedious transfer of discrete solutions
from one mesh to the other as is required for mesh-based methods, such as the finite
element method, as shown in Rüter et al. [12]. It is therefore tailored to meshfree
methods and adds versatility and convenience to the goal-oriented error estimator
proposed in this paper.

The paper is divided up as follows: in Section 2, the model problem of linear
elasticity is presented. Furthermore, the meshfree method, RKPM, is introduced.
Section 3 focuses on the derivation of a global implicit residual-type error estimator.
In Section 4, the error estimator is extended to the case of goal-oriented error estima-
tors where the error measure is given in terms of an arbitrary, user-defined quantity
of interest. Thereby, emphasis is placed on the multi-space approach. The error
estimator is then applied to a linear elastic fracture mechanics (LEFM) problem in
Section 5. The paper concludes with Section 6, which summarizes the major findings
achieved from theoretical and numerical points of view.
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2. The model problem and its meshfree discretization

In this section, we briefly present the linear elasticity problem in its strong and
weak forms. Furthermore, we show how a meshfree Galerkin method can be con-
structed based on reproducing kernel (RK) shape functions.

2.1. Strong and weak forms

We first introduce the elastic body which is given by the open, bounded domain
Ω ⊂ Rd with dimension d ∈ {1, 2, 3}. Its boundary Γ = ∂Ω consists of two disjoint
parts ΓD ⊂ Γ and ΓN = Γ \ Γ̄D, where, for simplicity, homogeneous Dirichlet and
(generally inhomogeneous) Neumann boundary conditions are imposed, respectively.

The strong form of the elliptic and self-adjoint model problem of linear elasticity
is to find the displacement field u such that the field equations

− divσ(u) = f in Ω (1a)

σ − C : ε(u) = 0 in Ω (1b)

ε−∇
symu = 0 in Ω (1c)

subjected to the boundary conditions

u = 0 on ΓD (2a)

σ(u) · n = t̄ on ΓN (2b)

are fulfilled. In the above, σ denotes the stress tensor, ε is the strain tensor, and C

is the elasticity tensor. Furthermore, on the right-hand sides of (1) and (2) we have
prescribed body forces f and tractions t̄ that are assumed to be in the spaces L2(Ω)
and L2(ΓN), respectively. Lastly, n denotes the unit outward normal.

In the classical weak formulation associated with (1) and (2) we seek for a solu-
tion u in the trial and test space V0 = {v ∈ H1(Ω) ; v|ΓD

= 0} ⊂ V = H1(Ω) such
that

a(u, v) = F (v) ∀v ∈ V0. (3)

Here, a is a bilinear form defined on V × V as

a(u, v) =

∫

Ω

σ(u) : ε(v) dV (4)

and F is a linear form defined on V as

F (v) =

∫

Ω

f · v dV +

∫

ΓN

t̄ · v dA. (5)

2.2. Reproducing kernel shape functions

In the associated meshfree Galerkin formulation of the weak form (3), we
project (3) onto a suitable finite-dimensional subspace Vh ⊂ V with

Vh = span {ΨI}
nP

I , (6)
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where nP is the number of particles xI ∈ Ω̄. A function vh ∈ Vh can then be
expressed as

vh(x) =
∑

nP

ΨI(x)vI ∀x ∈ Ω̄. (7)

Here, vI is a particle coefficient but, as opposed to the finite element method, in
general not the value of vh at particle xI , i.e. vI 6= vh(xI), since, in general, the
reproducing kernel (RK) shape functions ΨI do not possess the Kronecker-delta prop-
erty (unlike the finite element shape functions), i.e. ΨI(xJ) 6= δIJ . Thus, Dirichlet
boundary conditions cannot be satisfied by functions vh ∈ Vh. As a consequence, it
is obvious that, in general, Vh 6⊂ V0.

The meshfree RK shape function ΨI associated with a particle xI takes the
specific form

ΨI(x) = Φ(x− xI)H
T (0)M−1(x)H(x− xI) (8)

with kernel function Φ, typically chosen as a cubic B-spline, vector of monomial
basis functions H , and the symmetric moment matrix

M(x) =
∑

nP

Φ(x− xI)H(x− xI)H
T (x− xI). (9)

Note that since M needs to be invertible, the support of the kernel function Φ, i.e.
suppΦ, needs to cover a sufficient amount of particles, see [7].

2.3. The reproducing kernel particle method

RKPM is a Galerkin method based on the RK shape functions as introduced in
the previous section. As such, it is clear from the above that (homogeneous) Dirichlet
boundary conditions on ΓD are generally not fulfilled by the method. Without
loss of generality, in this paper we make use of Nitsche’s method to weakly impose
the Dirichlet boundary conditions, see [10, 2], which leads to the following discrete
problem associated with (3): find the RKPM solution uh ∈ Vh such that

ah(uh, vh) = F (vh) ∀vh ∈ Vh. (10)

Here, the discretization-dependent, symmetric bilinear form ah is defined as

ah(uh, vh) = a(uh, vh)−

∫

ΓD

vh ·σ(uh)·n dA−

∫

ΓD

uh ·σ(vh)·n dA+
β

h

∫

ΓD

uh ·vh dA

(11)
with discretization parameter h and penalty parameter β ∈ R

+ that takes the role of
a stabilization parameter. Note that the right-hand side remains unchanged, since
homogeneous boundary conditions are imposed on ΓD.

3. Implicit energy norm residual-type error estimation

In what follows, we will derive an energy-norm error estimator of implicit residual
type, which is based on a projected error residual equation to account for Nitsche’s
method and to get a symmetric form. The error estimator is established in terms of
local forms of the projected error residual equation on each (Gauss) integration cell.
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3.1. The error residual equation

The discretization error is defined in the usual way as e = u−uh. However, the
error e as obtained by RKPM is an element of VE = {v ∈H1(Ω) ; v|ΓD

= e|ΓD
} ⊂ V

rather than V0 as in mesh-based methods thanks to the Kronecker delta property of
the mesh-based shape functions.

The starting point of our a posteriori error analysis will be the (extended) error
residual equation

a(e, v)−

∫

ΓD

v · σ(e) · n dA = R̂(v) ∀v ∈ V, (12)

where the extended residual R̂ is defined on V as

R̂(v) = F (v)− a(uh, v) +

∫

ΓD

v · σ(uh) · n dA (13a)

=

∫

Ω

f · v dV +

∫

ΓN

t̄ · v dA−

∫

Ω

σ(uh) : ε(v) dV +

∫

ΓD

th · v dA. (13b)

Note that if v is chosen from V0, then (12) simplifies to the well-known equation
a(e, v) = R(v). Obviously, coercivity is an issue in (12). Therefore, and also to deal
with the bilinear form a only, we propose to introduce a projection of the error in
VE, denoted by ê and with the obvious property ê|ΓD

= e|ΓD
. This projection is

defined via

a(ê, v) = a(e, v)−

∫

ΓD

v · σ(e) · n dA ∀v ∈ V (14)

and leads to the projected error residual equation

a(ê, v) = R̂(v) ∀v ∈ V (15)

with coercive bilinear form a. Using the discretization-dependent norm

‖v‖21
2
,h
=
∑

E⊂ΓD

h−1
E ‖v‖2L2(E), (16)

with edge discretization parameter hE and edge E, the Cauchy-Schwarz inequality,
and an inverse estimate with positive constant C, it can be shown, see [11], that

|||e||| ≤ |||ê|||+ C‖ê‖ 1

2
,h (17)

holds, where ||| · ||| is the energy norm. Note that if ê = e = 0 on ΓD, then |||ê||| = |||e|||.

3.2. The energy-norm a posteriori error estimator

The general idea to derive an implicit residual-type a posteriori error estimator
is to solve an approximation of the (projected) error residual equation (15). This
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usually requires higher-order trial and test spaces because of the Galerkin orthogo-
nality and would be computationally too expensive if computed globally. Therefore,
the (projected) error residual equation (15) is solved in subdomains of the elastic
body Ω, which can be chosen in a meshfree method as the integration cells.

The trial space for the local problems in each of the ni integration cells Ωi is
thus defined as VE,i = {v|Ωi

; v ∈ VE}. Likewise, the local test space becomes Vi =
{v|Ωi

; v ∈ V}. Consequently, the local bilinear form ai on Vi × Vi is given by

ai(ê|Ωi
, v) =

∫

Ωi

σ(ê|Ωi
) : ε(v) dV. (18)

Similarly, the local extended residual R̂i on Vi reads

R̂i(v) =

∫

Ωi

f |Ωi
· v dV +

nl
∑

l=1

∫

El⊂∂Ωi

tl · v dA−

∫

Ωi

σ(uh|Ωi
) : ε(v) dV, (19)

where nl is the number of edges El of an integration cell and tl = σ(u|Ωi
) ·n are the

exact tractions if El 6⊂ ΓD, otherwise tl = σ(uh|Ωi
) · n are the RKPM tractions.

With the above local forms (18) and (19) at hand, the projected discretization
error restricted to an integration cell, i.e. ê|Ωi

, satisfies the local form of the (pro-
jected) error residual equation (15) given as

ai(ê|Ωi
, v) = R̂i(v) ∀v ∈ Vi. (20)

Note that this a pure Neumann problem for each integration cell Ωi. However, the
extended residual R̂i involves the generally unknown traction field tl. Therefore, we
replace the exact tractions tl in (19) by a computable traction field on each edge of
the integration cell El ⊂ ∂Ωi, denoted by t̃l,h. The residual (19) then turns into

R̃i(v) =

∫

Ωi

f |Ωi
· v dV +

nl
∑

l=1

∫

El⊂∂Ωi

t̃l,h · v dA−

∫

Ωi

σ(uh|Ωi
) : ε(v) dV. (21)

From the requirement that the sum of the local residuals over all integration cells
should match the global residual, it follows that t̃l,h need to be compatible between
the integration cells and that they need to fulfill the Neumann boundary conditions.
The first requirement is already fulfilled by the RKPM tractions and the second
requirement is obviously trivial to fulfill.

Replacing R̂i by the computable residual R̃i in the local error residual equa-
tion (20) then yields the local problem

ai(ψi, v) = R̃i(v) ∀v ∈ Vi, (22)

which we solve for a solution ψi ∈ VE,i that can be seen as an approximation of ê|Ωi

depending on the accuracy of the tractions t̃l,h. However, as mentioned above, (22) is
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a pure Neumann problem. The solvability of (22) thus requires that the computable
tractions t̃l,h are also equilibrated, which results in additional computational efforts.

The summation of the local problems (22) over all ni integration cells and sub-
sequent application of the Cauchy-Schwarz inequality then yields the constant-free
energy-norm estimator for the projected discretization error

|||ê||| ≤

(

∑

ni

ai(ψi,ψi)

)
1

2

, (23)

which bears resemblance to its finite element counterpart as originally introduced by
Bank & Weiser [6] and Ainsworth & Oden [1].

From (17) we then immediately infer that the discretization error e, measured in
the energy norm, can be bounded from above as

|||e||| ≤

(

∑

ni

ηi

)
1

2

+ C

(

∑

El⊂ΓD

h−1
E ηE

)
1

2

. (24)

Here, ηi = ai(ψi,ψi) is the error estimator in the domain and ηE = ‖ê‖2L2(E) is the
computable error on the Dirichlet boundary ΓD.

Note that, in general, it is not required that the local problems (22) are solved
with the same numerical method as used to approximate the model problem (3).
Since the local problems are Neumann problems, the finite element method or RKPM
can both be used with a sufficiently high polynomial order.

4. Goal-oriented a posteriori error estimation

For the practical engineer, further error measures than the energy norm are often
of bigger interest, e.g. the error of the fracture criterion within the framework of lin-
ear elastic fracture mechanics (LEFM), see Stone & Babuška [13]. In the terminology
of goal-oriented error estimation, the fracture criterion is an example of a quantity
of interest and our aim is to control the error of such quantities of interest. The
derivation of the goal-oriented error estimator follows the well-established duality
strategy as originally elaborated by Eriksson et al. [9] and others.

4.1. The dual problem based on a multi-space approach

Let the quantity of interest be given by the linear or linearized functional Q
defined on V0. Then the dual problem of (3) asks to find a solution

∗

u ∈ V0 such that

a(v,
∗

u) = Q(v) ∀v ∈ V0. (25)

Note that since the linear elasticity problem is self adjoint, a is symmetric and
thus (25) results from the primal problem (3) by simply replacing the right-hand
side.
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For the associated meshfree RKPM discretization of the above dual problem (25),

we introduce the finite-dimensional subspace
∗

Vh ⊂ V. In the most general case,
∗

Vh is
different from Vh, which means that, compared to the discretization of the primal
problem (3), we may use a different set of particles and even different RK shape
functions for the Galerkin approximation of the dual solution. The homogeneous
Dirichlet boundary conditions (2a) are again weakly imposed using Nitsche’s method,

which results in the discrete problem of finding a solution
∗

uh ∈
∗

Vh such that

ah(vh,
∗

uh) = Q(vh) ∀vh ∈
∗

Vh (26)

with associated discretization error
∗

e =
∗

u−
∗

uh.

4.2. The goal-oriented error estimator

To estimate the error of the quantity of interest Q, the general strategy is to
set v = e in the dual problem (25). Note, however, that v is required to be in
the space V0 in (25), whereas e is an element of VE . Similar to the error residual
equation in Section 3.1, we therefore need to extend the dual problem (25) to the
case where v can be chosen from V, which results in

Q(e) = a(e,
∗

e)−

∫

ΓD

e · σ(
∗

e) · n dA−

∫

ΓD

∗

e · σ(e) · n dA

+ R̂(
∗

uh)−

∫

ΓD

e · σ(
∗

uh) · n dA.

(27)

Note that the last two terms in (27) are exactly computable.
As can be observed from (27), the (extended) residual of the primal problem R̂

needs to be computed in terms of the RKPM solution of the dual problem
∗

uh.
This mainly requires to integrate the dual RKPM solution

∗

uh using the integration
cells Ωi of the primal problem. Since the particles are independent from the mesh,
this computation is “a piece of cake”, as opposed to a mesh-based method, where
the transfer of the solution from one mesh to the other mesh can be tedious, see [12]
for more details in this respect.

The first three terms on the right-hand side of (27) can now be estimated using the
Cauchy-Schwarz inequality and an inverse estimate, see [11]. If the dual discretization
is kept constant during adaptive refinements, then we arrive at the error estimate

|Q(e)| ≤ C1|||ê|||+ C2‖ê‖ 1

2
,h + |R(

∗

uh)−

∫

ΓD

e · σ(
∗

uh) · n dA|, (28)

where the positive constants C1 and C2 include several constants. The first term in
the above estimate can be estimated using the energy-norm error estimator (23).

If, in addition, the errors on the Dirichlet boundary vanish, this estimate can be
simplified even further to

|Q(e)| ≤ C1|||ê|||+ |R(
∗

uh)| (29)

with constant C1 = |||
∗

ê|||.

201



t

100200

1200

600

4
0
0

4
0
0

8
0
0

100 200

ΩJ

Figure 1: System and loading, measurements in mm

Figure 2: Primal error distribution Figure 3: Dual error distribution

5. Numerical example: 4-point bending

In this section, we aim at investigating the goal-oriented error estimator for the
case of the J-integral as an example for a nonlinear quantity of interest in LEFM. In
a material force setting within Eshelbian mechanics, the J-integral takes the form

J(u) = −

∫

ΩJ

Σ(u) :H(qx̄) dA. (30)

Here, q is a C0-function with q = 1 at the crack tip and q = 0 on ΓJ = ∂ΩJ \ Γc.
Moreover, H(·) = ∇(·) is the gradient tensor and Σ = WsI−H

T ·σ is the Newton-
Eshelby stress tensor with the specific strain-energy function Ws = 1/2ε : C : ε and
the identity tensor I. The linearized quantity of interest Q is then defined as

Q(v) = −

∫

ΩJ

Σlin(uh) :H(v) dA, (31)

where we introduced the linearized stress tensor

Σlin(uh) = div(qx̄)σ(uh)− σ(uh) ·H
T (qx̄)−H(qx̄) :

[

HT (uh) · C
]

. (32)
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Figure 4: Adaptive primal refinement Figure 5: Adaptive dual refinement

The system in this example is a pre-cracked glass plate in plane-stress state sub-
jected to 4-point bending, as illustrated in Figure 1. The material data is given in
terms of Young’s modulus E = 64.000 N/mm2 and Poisson’s ratio ν = 0.2. The load
in this example is |t̄| = 1 N/mm2. The reference value J(u) = 0.016186862 kJ/m2

was computed using an adaptively refined Q2 finite element mesh with 2.434.140 de-
grees of freedom (for the discretized half of the system).

As can be seen, the linearization depends on the solution of the primal problem.
Therefore, one needs to solve the primal problem, use its solution to create the load
of the dual problem, solve the dual problem and use the solution of both the primal
and the dual problem to estimate the error of the J-integral. These steps can be
easily carried out using the proposed multi-space RKPM approach.

In Figs. 2 and 3 the distribution of the exact error in each integration cell is
visualized for both the primal and the dual problem (darker areas indicate larger
errors). Accordingly, it can be expected that the error estimator finds the regions
and refines the particles where large errors appear. This can be verified in terms of
the 13-th primal refinement and 10-th dual refinement, see Figs. 4 and 5, respectively.

A comparison of various methods to deal with the dual problem is plotted in
Figs. 6 and 7. It can be observed that the convergence rate is decreased when the dual
discretization remains constant, which becomes clear from the error estimate (28).
It can also be seen that when a fine dual discretization is used, the error is much
smaller and thus the error tolerance could be reached with far less refinement steps
compared to the other cases. A coarse and constant dual discretization, on the
other hand, has the advantage of being computationally inexpensive. For a higher
convergence rate, especially in the case of adaptive refinements, it is recommendable
to refine both the primal and the dual discretization. The presented multi-space
approach allows in this case to refine both problems independently and conveniently,
which is not straightforwardly possible using a mesh-based method. Moreover, the
refinement process itself is much easier using a meshfree method, because particles
can be easily added and even removed from the discretization.
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Figure 6: Estimated error Q(e) ≈
J(u)− J(uh), uniform refinements

Figure 7: Estimated error Q(e) ≈
J(u)− J(uh), adaptive refinements

6. Conclusions

In this paper, both an implicit energy-norm and a goal-oriented a posteriori

error estimator for RKPM approximations were derived and implemented. As it
turned out, the main problem in the derivation of the error estimator is the violation
of Dirichlet boundary conditions in meshfree methods. To cope with this problem,
a projected error and thus a projected error residual equation were introduced. Since
the RKPM particles are independent from the integration cells, a multi-space ap-
proach could easily be established allowing to use different discretizations for the
primal and the dual problem. The error estimator was successfully applied to the
J-integral as a crack propagation criterion in LEFM, offering the possibility to use
only one (coarse or fine) dual solution within the refinement scheme and thus either
obtaining less accurate but inexpensive (for the coarse solution) or more accurate
but also more expensive (for the fine solution) error estimates.

Acknowledgements

The support of this work by DFG (German Research Foundation) under the grant
no. RU 1213/2-1 is very much appreciated.

References

[1] Ainsworth, M. and Oden, J. T.: A posteriori error estimation in finite element

analysis. John Wiley & Sons, New York, 2000.
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