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Abstract: This article focuses on the heat radiation intensity optimization
on the surface of an aluminium shell mould. The outer mould surface is heated
by infrared heaters located above the mould and the inner mould surface is
sprinkled with a special PVC powder. This is an economic way of producing
artificial leathers in the automotive industry (e.g. the artificial leather on
car dashboards). The article includes a description of a mathematical model
that allows us to calculate the heat radiation intensity across the outer mould
surface for every fixed location of the heaters. We also use this mathematical
model for optimizing the locations of the heaters to generate uniform heat
radiation intensity on the whole outer mould surface during the heating of the
mould. In this way we obtain an even colour shade and material structure of
the artificial leather. The problem of optimization is more complicated. Using
gradient methods is not suitable because the minimized deviation function
contains many local minima. A differential evolution algorithm is used during
the process of optimization. The calculations were performed by a Matlab
code written by the authors. The article contains a practical example including
graphical outputs.

Keywords: heat radiation intensity, evolution optimization algorithm, math-
ematical model, experimental measurement, software implementation

MSC: 65K10, 78M50

1. Introduction

This article describes the calculation of radiation intensity on the whole mould
surface for the fixed locations of infrared heaters above the mould and the process
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of heat radiation intensity optimization on the mould surface. The problem of opti-
mization is rather complex (the used moulds often have very complicated surfaces,
during the process of optimization possible collisions between one heater and another
as well as collisions between a heater and the mould surface must be avoided). The
minimized deviation function has many local minima. Using gradient methods for
finding the global minimum is therefore unsuitable. Thus, we used an evolution op-
timization algorithm. A differential evolution algorithm DE/rand/1/bin (see details
in [6]) is used to find suitable locations of the heaters over the mould to optimize the
heat radiation intensity on the whole outer mould surface. The manufacturer needs
to implement the optimization procedure on the production line (after its verification
in the Matlab system). Therefore, we need to know the optimization process in every
detail and to be able to perform own modifications of the programmed optimization
algorithm. We do not use existing commercially available software tools.

In practice, an aluminium mould is heated by a set of infrared heaters located
above the outer mould surface. It is necessary to ensure the same heat radiation in-
tensity (within a given tolerance) on the whole outer mould surface by finding a suit-
able locations for the heaters. In this way the same colour and material structure of
the artificial leather are assured. Moulds which very often have complicated shapes
and which weigh from 100 to 300 kilograms are used. The infrared heaters have
a tubular form and their length is about 20 centimeters. Every heater is equipped
with a mirror located above the radiation tube which reflects heat radiation in a set
direction (see Figure 1).

Figure 1: Infrared heater Ushio with heating power 2000 W.

2. Mathematical model of the heat radiation

In this chapter a mathematical model of the heat radiation produced by the in-
frared heaters on the outer mould surface is described. The heaters and the heated
mould are represented in 3-dimensional Euclidean space E3 using the Cartesian co-
ordinate system (O, x1, x2, x3) with basis vectors e1 = (1, 0, 0), e2 = (0, 1, 0) and
e3 = (0, 0, 1).

2.1. Representation of the heater

A heater is represented by a straight line segment of length d (see Figure 2).
The location and orientation of a heater is defined by the following parameters:
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Figure 2: Schematic representation of the infrared heater.

(i) the coordinates of the heater centre S = [s1, s2, s3], (ii) the unit vector u =
(u1, u2, u3) of the heat radiation direction, where component u3 < 0 (i.e., the heater
radiates “downward”), (iii) the vector of the heater axis r = (r1, r2, r3). Another
way to determine the vector r is by using angle ϕ between the vertical projection of
vector r onto the x1x2-plane and the positive part of axis x1 (the vectors u and r
are orthogonal, 0 ≤ ϕ < π). The location of each heater Z can be defined by the
following 6 parameters

Z : (s1, s2, s3, u1, u2, ϕ). (1)

2.2. Representation of the mould

The outer mould surfaceP is described by elementary surfaces pj, where 1≤j ≤ N .
It holds that P = ∪ pj, where 1 ≤ j ≤ N and int pi ∩ int pj = ∅ for i 6= j,
1 ≤ i, j ≤ N . Each elementary surface pj is described by the following parame-
ters: (i) its centre of gravity Tj = [tj1, t

j
2, t

j
3], (ii) the unit outer normal vector

vj = (vj1, v
j
2, v

j
3) at the point Tj (we suppose vj points “upwards”and therefore is

defined through the first two components vj1 and vj2), (iii) the area wj of the ele-
mentary surface. Every elementary surface pj thus can be defined by the following
6 parameters

pj : (tj1, t
j
2, t

j
3, v

j
1, v

j
2, wj). (2)

2.3. Experimental measurement of the heater radiation intensity

We need to know the heat radiation intensity in the heater surroundings to cal-
culate the total radiation intensity on the outer mould surface. The heater man-
ufacturer does not provide the distribution function of the heat radiation intensity
in the heater surroundings. We set up the experimental measurement of the heat
radiation intensity as follows. The location of the heater is Z : (0, 0, 0, 0, 0, 0) in
accordance with relation (1), i.e., the centre S of the heater lies at the origin of the
Cartesian coordinate system (O, x1, x2, x3); the unit radiation vector has coordinates
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Figure 3: Heat radiation intensity in the planes at distances 9, 11 and 13 cm from
the heater.

u = (0, 0,−1) and the vector of the heater axis has coordinates r = (1, 0, 0). We
assume the heat radiation intensity across the elementary surface pj is the same as at
the centre of gravity Tj. The heat radiation intensity at Tj depends on the position
of this point (determined by the first three parameter in the elementary surface pj
given by (2)) and on the direction of the outer normal vector vj at point Tj (deter-
mined by the fourth and fifth parameters in the elementary surface pj given by (2)).
The heat radiation intensity I in the surroundings and below the heater was ex-
perimentally measured by a sensor at selected points a = [a1, a2, a3, a4, a5] (the first
three parameters a1, a2, a3 describe the position of the centre of gravity of a fictitious
elementary surface and the fourth and fifth parameter describes the direction of the
outer normal vector at the point [a1, a2, a3]).

We use measured values I(a) of heat radiation intensity at the selected points a
and the linear interpolation function of five variables to calculate the heat radiation
intensity I(b) for the general point b = [b1, b2, b3, b4, b5] in the heater surroundings.

The measured heat radiation intensity, and its interpolated values in three parallel
planes with x1x2-plane are shown in colour in Figure 3 in the case of 0o deflection of
the axis of the sensor (i.e., axis of the sensor is vertical). We use linear interpolation
of a function of five variables. We assume that the point b holds aj,ij ≤ xbj ≤ aj,ij+1

for 1 ≤ j ≤ 5. Let us denote mj =
xb
j−xj,ij

aj,ij+1−aj,ij
for 1 ≤ j ≤ 5. Then it holds for the

interpolation value of radiation intensity I(b) at the point b of heater Z

I(b) = I
(
xb1, x

b
2, x

b
3, x

b
4, x

b
5

)
=

i1+1∑
k1=i1

. . .
i5+1∑
k5=i5

I (a1,k1 , a2,k2 , a3,k3 , a4,k4 , a5,k5) · (3)

·
5∏

l=1

H (l, kl − il) .

The interpolation formula is described in detail in [1], p. 148, and [3].
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2.4. General case of the heater location

In this subsection we explain a transformation of the general case of a heater
location with reference to the special heater position solved in Subsection 2.3. For
a heater in a general position, we briefly describe the transformation of the previous
Cartesian coordinate system (O, e1, e2, e3) into a positively oriented Cartesian system
(S, r, n,−u), where S is the centre of the heater, r is the heater axis vector, and u is
the direction vector of the heat radiation. The vector n is determined by the vector
product of the vectors −u and r (see more detail in [2], [7]) and is defined by the
following relation

n = (−u)× r =

(
−
∣∣∣∣∣ u2 u3

r2 r3

∣∣∣∣∣ ,
∣∣∣∣∣ u1 u3

r1 r3

∣∣∣∣∣ ,−
∣∣∣∣∣ u1 u2

r1 r2

∣∣∣∣∣
)
.

The vectors r, u and n are normalized to give the unit length. Then we can define
an orthonormal transformation matrix

A =

 r1 n1 −u1

r2 n2 −u2

r3 n3 −u3

 .
Recall that for the elementary surface pj, the respective triples Tj and vj represent
its centre of gravity and its outer normal vector in the Cartesian coordinate system
(O, e1, e2, e3). If S is the triple of parameters representing (in (O, e1, e2, e3)) the centre
of the heater that determines the coordinate system (S, r, n,−u), then Tj and vj are
transformed as follows(

T
′

j

)T
= AT (Tj − S)T and

(
v

′

j

)T
= ATvTj , (4)

where T
′
j and v

′
j are the coordinates in (S, r, n,−u). In this way, we transform the

general case of the heater location to the measured case and we can calculate heat ra-
diation intensity by using linear interpolation as described in the previous subsection
(transformed point T

′
j and vector v

′
j correspond to point b in Subsection 2.3).

2.5. Calculation of the total heat radiation intensity

Now we describe the numerical computation procedure for the total heat radiation
intensity on the mould surface. We denote by Lj the set of all heaters radiating on
the jth elementary surface pj (1 ≤ j ≤ N) for the fixed locations of the heaters, and
Ijl the heat radiation intensity of the lth heater on the pj elementary surface. Then
the total radiation intensity Ij on the elementary surface pj is given by the following
relation

Ij =
∑
l∈Lj

Ijl . (5)
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The producer of artificial leathers recommends a constant value of the heat radiation
intensity on the whole outer mould surface. Let us denote this constant value as Irec.
We can define function F , the deviation of the heat radiation intensity, by the relation

F =

∑N
j=1 |Ij − Irec|wj

W
(6)

and the deviation F̃ by the relation

F̃ =

√√√√√ 1

W
·

N∑
j=1

(Ij − Irec)2wj , (7)

where W =
∑N

j=1 wj and we highlight that wj denotes the area of the elementary sur-
face pj. We need to find the locations of the heaters so that the value of deviation F
(alternatively deviation F̃ ) is as small as possible.

3. Optimization of the heaters locations

Functions F and F̃ defined by (6) and (7) contain many local minima. Using
gradient methods for finding global minima of the functions F and F̃ is not ap-
propriate. If we used a gradient method, there would be a high probability that
we would find only a local minimum of the function. Therefore, we use a differ-
ential evolution algorithm (more details in [6]) for finding an optimized minimum
of function F (i.e., to optimize the locations of the heaters). The disadvantage of
a differential evolution algorithm is its computational demandingness and slow con-
vergence. The location of every heater is defined in accordance with the relation (1)
by 6 parameters. Therefore 6M parameters are necessary to define the locations
of all M heaters. One individual in the differential evolution algorithm represents
one possible location of all 6M heaters. In the algorithm we successively construct
populations of individuals. Every population includes NP individuals where every
individual is a potential solution to our problem. We seek the individual ymin ∈ C
satisfying the condition

F (ymin) = min{F (y); y ∈ C}, (8)

where C ⊂ E6M is the set we are searching for. Every element of C is formed by
a set of 6M allowable parameters and this set defines just one constellation of the
heaters above the mould. The identification of the individual ymin defined by (8) is
not realistic in practice. But we are able to determine an optimized solution yopt.
The generated individuals are saved in the matrix BNP×(6M+1). Every row of this
matrix represents one individual, y, and its evaluation, F (y).

3.1. Differential evolution algorithm

Now we describe schematically the particular steps of the differential evolution
algorithm named DE/rand/1/bin (for more details see [6] and [8]) which is applied
to our problem.
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We define a specimen which contains values ranges of each gene of the individual
in the first step of the algorithm. Then we define an initial individual y1 and randomly
generate the initial generation of individuals. We create successively generations of
individuals y and we are looking for an individual with the smallest value F (y)
(where function F is given by relation (6)) in the following steps of the algorithm.
Note that four individuals y of a generation participate in the creation of individual
y of the following generation. We describe the diagram of the algorithm.

Input: the initial individual y1, population size NP , the number of used heaters M
(dimension of the problem is 6M), crossover probability CR, mutation factor f , the
specified accuracy of the calculation ε.
Internal computation:
1. create an initial generation (G = 0) of NP individuals yGi , 1 ≤ i ≤ NP ,
2.a) evaluate all the individuals yGi of the generation G (calculate F (yGi ) for every
individual yGi ), b) store the individuals yGi and their evaluations F (yGi ) into the ma-
trix B,
3. repeat until min{F (yGi ); yGi ∈ B} < ε
a) for i := 1 step 1 to NP do

(i) randomly select index ki ∈ {1, 2, . . . , 6M},
(ii) randomly select indexes r1, r2, r3 ∈ {1, 2, . . . , NP},

where rt 6= i for 1 ≤ t ≤ 3 and
r1 6= r2, r1 6= r3, r2 6= r3;

(iii) for j := 1 step 1 to 6M do
if (rand(0, 1) ≤ CR or j = ki) then

ytriali,j := yGr3,j + f
(
yGr1,j − y

G
r2,j

)
else

ytriali,j := yGi,j
end if

end for (j)

(iv) if F
(
ytriali

)
≤ F

(
yGi
)

then yG+1
i := ytriali

else
yG+1
i := yGi

end for(i),

b) store individuals yG+1
i and their evaluations F

(
yG+1
i

)
(1 ≤ i ≤ NP ) of new gen-

eration G+ 1 into the matrix B, G := G+ 1
end repeat.
Output:
the row of matrix B that contains corresponding value min{F (yGi ); yGi ∈ B} repre-
sents the best found individual yopt.

Note that function rand(0, 1) randomly chooses a number from the interval 〈0, 1〉.
The notation yGi,j means the jth component of an individual yGi in Gth generation.
The individual yopt is the final optimized solution that contains information about
the location of every heater in the form (1).
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4. Practical example

Now we describe a practical example of the heating of an aluminium shell mould.
The volume of the mould is 0.8 × 0.4 × 0.15 m3, mould thickness is 8 mm (see Fig-
ure 5), the number of elementary surfaces, N = 2, 064; the heat radiation intensity
recommended by the producer of artificial leathers, Irec = 47 kW/m2. We use 16 in-
frared heaters (i.e., M = 16) of the same type (producer Philips, power 1, 600 W,
length 15 cm, width 4 cm). In the first step we calculate value F (y1) where the de-
viation of the heat radiation intensity F is defined by relation (6) and the initial
individual y1 corresponds to the following locations of the heaters. The centres of
the heaters lie in the plane parallel to the x1x2-plane and at a distance of 10 cm
from the centre of gravity Tj of the elementary surface pj with the highest value x

Tj

3

(1 ≤ j ≤ N). All the heaters have r = (1, 0, 0) and u = (0, 0,−1) (that is, all the
heaters radiate downwards and they are parallel to the axis x1). Then the deviation
for this location of heaters is F (y1) = 20.74.

We use the differential evolution algorithm described in subsection 3.1. to opti-
mize the locations of the heaters. The parameters of the algorithm are as follows:
population size NP = 192 (dimension of the problem is 6M = 96), mutation fac-
tor f = 0.98 and crossover probability CR = 0.60. The heaters locations ytech
recommended by the producer technicians based on their experience in the produc-
tion gives F (ytech) = 11.2204. We obtain the optimized individual yopt with value
F (yopt) = 2.02 after 4, 000 generations of the differential evolution algorithm. The
dependence of the deviation F (yopt) on the number of generations is shown in Fig-
ure 4. Furthermore, Figure 5 shows a graphical representation of heat radiation on
the mould surface corresponding to individual F (yopt) (where the levels of radiation
intensity in kW/m2 correspond to the shades of grey colouring).
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Figure 4: Dependence of F (yopt) on the number of generations.
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Figure 5: Heat radiation intensity (kW/m2) on the mould surface and the locations
of the heaters corresponding to the individual yopt.

We made calculations on a PC computer with CPU: IntelCore i7-3770 CPU @3,4
GHz, RAM: 32 GB and GPU: GeForce GTX 460.

5. Conclusions

On the basis of practical calculations, we get a sufficiently exact solution for
the optimized locations of heaters over the mould. We obtained more exact results
using the differential evolution algorithm than using a genetic algorithm in numerical
experiments (see [4], [5]). The temperature differences on the inner mould surface
have to be maintained in the range of 3 ◦C during the mould heating process. The
heat conductivity of the mould helps to unify different temperatures on the mould
surface.

The locations of heaters determined on the basis of experience of technicians
produces significantly worse results than the optimized locations. Generally, this
approach is more time consuming (approximately two to three weeks depending on
the mould size and the number of heaters). Furthermore, calculated optimization
of the locations of heaters is more accurate and faster than optimization based on
technicians experience.

The described method for manufacturing is an energy-efficient way of artificial
leathers production. The given optimization process is advantageous for producer
and induces virtually no additional cost.
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