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Abstract: A novel approach to study the propagation of fronts with random
motion is presented. This approach is based on the idea to consider the motion
of the front, split into a drifting part and a fluctuating part; the front position
is also split correspondingly. In particular, the drifting part can be related
to existing methods for moving interfaces, for example, the Eulerian level set
method and the Lagrangian discrete event system specification. The fluctuat-
ing part is the result of a comprehensive statistical description of the system
which includes the random effects in agreement with the physical properties
of the system. The resulting averaged process emerges to be governed by an
evolution equation of the reaction-diffusion type. Hence, following the pro-
posed approach, when fronts propagate with a random motion, models based
on methods for moving interfaces and those based on reaction-diffusion equa-
tions can indeed be considered complementary and reconciled. This approach
turns out to be useful to simulate random effects in wildland fire propagation
as those due to turbulent heat convection and fire spotting phenomena.
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1. Introduction

Modelling moving interfaces is an important issue in many research fields and in
several real world applications. In many natural phenomena the front propagates
into systems characterized by randomness and therefore the motion of the front gets
a random character. Here a novel formulation for modelling random front motion is
presented and its application to wildland fire propagation discussed.

Wildland fire propagation is a complex multi-scale, as well as a multi-physics and
multi-discipline process, strongly influenced by the atmospheric wind. Wildland fire
is fed by the fuel on the ground and displaced, beside meteorological and orographical
factors, also by the hot air that pre-heats the fuel and aids the fire propagation. Heat
transfer is turbulent due to the heat release in the Atmospheric Boundary Layer and
the fire-induced flow. Moreover, fire generates firebrands which after landing on the
ground act as new sources of fire. Both turbulence and jump-length of firebrands
are random processes that affect the fireline propagation.

Fire propagation has been mainly modelled in the literature by using methods
for simulating moving interfaces as the Eulerian level set method (LSM) [17], see
e.g. [6, 7], or the Lagrangian discrete event system specification (DEVS) [4, 11] with
the fire propagation solver ForeFire, see e.g. [3, 2], and reaction-diffusion type equa-
tions, see e.g. [1, 8].

These two approaches, namely that based on moving interface methods and that
based on reaction-diffusion equations, are considered alternatives to each other be-
cause the solution of the reaction-diffusion equation is generally a continuous smooth
function that has an exponential decay, and it is not zero in an infinite domain, while
methods for simulating moving interfaces are associated to an indicator function that
is 1 in the inner domain and 0 outside. However, when random processes (as for
example hot air turbulent convection and fire spotting) are taken into account ac-
cording to the proposed formulation, these two approaches can indeed be considered
complementary and reconciled.

2. Random front model formulation

The proposed approach is based on the idea to consider the motion of the front
split into a drifting part and a fluctuating part and the front position is split cor-
respondingly. This splitting allows specific numerical and physical choices that can
improve the algorithms and the models. In particular, the drifting part can be re-
lated to existing methods for moving interfaces, for example, the Eulerian LSM [17]
or the Lagrangian DEVS [4, 11], and this permits the choice of the best method
for any specific application. The fluctuating part is the result of a comprehensive
statistical description of the system which includes the random effects in agreement
with the physical properties of the system.

The resulting averaged process emerges to be governed by an evolution equation
of the reaction-diffusion type. Hence, following the proposed approach, when fronts
propagate with a random motion, models based on methods for moving interfaces and
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those based on reaction-diffusion equations can indeed be considered complementary
and reconciled.

Let Γ be a simple closed curve, or an ensemble of simple non-intersecting closed
curves, representing a propagating interface in two dimensions, and let S be the
domain of interest S ⊆ R2. In the case of Γ being an ensemble of n curves, the
ensemble of the n interfaces is considered to be an interface.

The subset of the domain S corresponding to the region Ω enclosed by Γ may be
conveniently identified by an indicator function IΩ : S × [0,+∞[→ {0, 1} defined as
follows

IΩ(x, t) =


1 , x ∈ Ω ,

0 , elsewhere .
(1)

In the case of a front line Γ made of more than one closed curve, the domain Ω is
not simply connected, resulting in more than one sourrounded area evolving inde-
pendently.

The indicator function IΩ at time t = 0, i.e. IΩ(x, t = 0), describing the initial
topology of the front, is indicated in the following as IΩ0(x0).

Let Xω(t,x0) = x(t,x0) + ηω be the ω-realization of a random trajectory driven
by the random noise η. For every realization, the initial condition is stated to be

Xω(0,x0)=x0. Using the sifting property of δ-function, i.e. g(x)=

∫
g(x) δ(x− x) dx,

the evolution in time of the ω-realization of a random front contour γω(x, t) is given
by

γω(x, t) =

∫
S

γ(x0) δ(x−Xω(t,x0)) dx0 , (2)

which in terms of the random indicator IΩω(x, t) reads

IΩω(x, t) =

∫
S

IΩ0(x0) δ(x−Xω(t,x0)) dx0

=

∫
Ω0

δ(x−Xω(t,x0)) dx0 =

∫
Ω(t)

δ(x−Xω(t,x)) dx , (3)

where an incompressibility-like condition
dx0

dx
= 1 is assumed.

Let ϕe(x, t) : S × [0,+∞[→ [0, 1] be an effective indicator. It may be defined as

ϕe(x, t) = 〈IΩω(x, t)〉 =

〈∫
Ω(t)

δ(x−Xω(t,x)) dx

〉
=

∫
Ω(t)

〈δ(x−Xω(t,x))〉 dx

=

∫
Ω(t)

f(x; t|x) dx =

∫
S

IΩ(x, t)f(x; t|x) dx , (4)
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where 〈·〉 is the ensemble average and f(x; t|x) = 〈δ(x−Xω(t,x))〉 is the probability
density function (PDF) of fluctuations of the perimeter around the contour Γ(t).

Since the present approach is formulated to study the effects of an underlying dif-
fusive process in front propagation, according to classical properties of diffusion, the
resulting PDF f(x; t|x) of the stochastic process Xω is considered to be unimodal
and its mean and median are coincident. This means that f(x; t|x) is a symmet-
ric probability distribution which normalizes after integration both over x and x.
Consequently, values of the effective indicator ϕe(x, t) range in the compact inter-
val [0, 1].

The front line Γ(t) can be obtained by existing methods for moving interfaces,
as for example the already mentioned LSM or DEVS. For a deterministic motion,
it holds f(x; t|x) = δ(x − x) and the result reduces to that of the chosen moving
interface method, i.e. IΩ(x, t).

The evolution of the effective indicator ϕe(x, t) can be estimated by applying
in (4) the Reynolds transport theorem [12]

∂ϕe
∂t

=

∫
Ω(t)

∂f

∂t
dx +

∫
Ω(t)

∇x · [V (x, t)f(x; t|x)] dx . (5)

Let f(x; t|x) be the solution of the evolution equation,

∂f

∂t
= Ef , f(x; 0|x0) = δ(x− x0) , (6)

with E = E(x) a generic evolution operator not acting on both x and t, then equa-
tion (5) becomes the following reaction-diffusion type equation

∂ϕe
∂t

= Eϕe +

∫
Ω(t)

∇x · [V (x, t)f(x; t|x)] dx , (7)

where V (x, t) is the expansion velocity of the domain Ω(t) determined by dx/dt =
V (x, t) = V(x, t) n̂ and n̂ is the normal to the front contour.

Finally, the front line is obtained by choosing an arbitrary threshold value ϕthe
which serves as the criterion to mark the inner region Ωe(t) =

{
x ∈ S|ϕe(x, t) > ϕthe

}
.

The above formulation has been considered for applications to diffusive media
governed by fractional differential equations [9, 10]. In the following section, the
application to wildland fire propagation is discussed.

3. Application to wildland fire propagation

In wildland fire propagation modelling, both the LSM and DEVS are adopted to
simulate the evolution of the burning area, see e.g. [6, 7] and [3, 2], respectively. The
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present approach can be used with both the methods to include random processes
such as turbulence and fire spotting.

In particular, let Xω(t,x0) = x(t,x0) +χω + ξω be the ω-realization of a random
trajectory driven by the random noises χ and ξ corresponding to turbulence and
fire spotting, respectively. For every realization, the initial condition is stated to
be Xω(0,x0) = x0. Average turbulent fluctuations are zero, i.e. 〈χ〉 = 0, and
fire spotting is assumed to be independent of turbulence and to be a downwind
phenomenon such that ξω = `ω n̂U , where ` is the landing distance from the main
fireline such that 〈`〉 > 0 and n̂U is the mean wind direction.

The modelling of the random processes is handled by the PDF f(x; t|x), account-
ing for the sum of the two independent random variables (x+χ) and ξ, representing
turbulence and fire spotting respectively. This means that f(x; t|x) is determined
by the convolution between the PDF corresponding to (x + χ), hereinafter labeled
as G, and the PDF corresponding to ξ, hereinafter labeled as q.

Since fire spotting is assumed to be an independent downwind phenomenon, the
effect of fire spotting is accounted for only the leeward part of the fireline. Taking
into account previous assumptions f(x; t|x) results in

f(x; t|x) =


∫ ∞

0

G(x− x− `n̂U ; t) q(`; t) d` , if n̂ · n̂U ≥ 0 ,

G(x− x; t) , otherwise .

(8)

Since the effective fireline contour ϕe(x, t) is a smooth function continuously
ranging from 0 to 1, a criterion to mark burned points have to be stated. For
example, points x such that ϕe(x, t) > ϕthe = 0.5 are marked as burned and the
effective burned area emerges to be Ωe(t) = {x ∈ S|ϕe(x, t) > ϕthe = 0.5}. However,
beside this criterion, a further criterion associated to an ignition delay due to the
pre-heating action of the hot air or to the landing of firebrands is introduced. Hence,
in the proposed modelling approach, an unburned point x will be marked as burned
when one of these two criteria is met.

This ignition delay, due to a certain heating-before-burning mechanism, can be
depicted as an accumulation in time of heat [13, 14], i.e.

ψ(x, t) =

∫ t

0

ϕe(x, s)
ds

τ
, (9)

where ψ(x, 0) = 0 corresponds to the unburned initial condition and τ is a character-
istic ignition delay that can be understood as an electrical resistance. Since the fuel
can burn because of two independent pathways, i.e. hot-air heating and firebrand
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landing, the resistance analogy suggests that τ can be approximatively computed as
resistances acting in parallel, i.e.

1

τ
=

1

τh
+

1

τf
=
τf + τh
τhτf

, (10)

where τh and τf are the ignition delays due to hot air and firebrands, respectively.
The amount of heat is proportional to the increasing of the fuel temperature

T (x, t), then

ψ(x, t) ∝ T (x, t)− T (x, 0)

Tign − T (x, 0)
, T (x, t) ≤ Tign , (11)

where Tign is the ignition temperature.

Finally, when ψ(x, t) = 1 the ignition temperature is assumed to be reached, so
that a new ignition occurs in (x, t) and, with reference to (4), the modelled fire goes
on by setting IΩ(x, t)=1. Then, as a consequence of the heating-before-burning mech-
anism described in (9), the domain Ω(t) is established as Ω(t) = {x∈S|IΩ(x, t) = 1}
which is hard to be analytically evaluated but numerically computed only. The ex-
pansion velocity of the domain Ω(t) in the normal direction is stated by means of
the prescription of the so-called Rate Of Spread (ROS).

4. Numerical simulations

To estimate the performance of the LSM based model and DEVS based model
coupled with the random processes a series of simulation experiments are conducted.
For LSM, a formulation developed in References [7, 6] is followed, while for DEVS,
ForeFire fire simulator [3] is used. Both these models have a different formulation to
incorporate the nature of vegetation and slope hence, it is tried to parametrise both
models in an identical setup.

In the present study, for brevity no particular type of vegetation is defined and
simulations are carried out with a pre-defined value of ROS. It is assumed that
the ROS remains constant for a particular terrain. It is emphasised that these are
simplified and idealised test cases and no attempt is made to choose the parameters
for a realistic setup. The present scope of this work is to provide a first look into
the investigation of comparing LSM and DEVS based fire simulations with random
processes.

A flat area of hypothetical homogeneous vegetation spread over a domain size of
5000 m× 5000 m is selected for simulations. Different values of the ROS are utilised
for different test cases. The ROS is assumed to be 0.05 ms−1 in no wind conditions
while, in the presence of wind, it is estimated by the 3% ROS model [2]:

ROS = 0.03U · n̂ , (12)
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where, U is the mean wind velocity. Since, 3% ROS considers the propagation
only towards the mean wind direction, in order to study the evolution of the fireline
towards the flank and rear the following ROS is also considered [6]:

ROS(U, θ) =

{
εo + a

√
U cosn θ, if |θ| ≤ π

2
,

εo(α + (1− α)| sin θ|), if |θ| > π
2
,

(13)

where, εo is the flank velocity and (αεo) is the rear velocity with α ∈ [0, 1], and θ is
defined as the angle between the normal to the front n̂ and the mean wind direction
n̂U . For the present setup, we assume the values α = 0.8, n = 3, a = 0.5 m1/2s−1/2,
εo = 0.2 ms−1.

In LSM, the domain is discretised with a Cartesian grid of 20 m in both x and y
directions, while for DEVS the resolution of the simulation is defined in the terms
of quantum distance ∆q and perimeter resolution ∆c [3]. The quantum distance ∆q
is defined as the maximum allowable distance to be covered by a particle at each
advance, while a measure of ∆c is used to decompose/regenerate/coalesce two par-
ticles on propagation. The choice of ∆q and ∆c is dependent on the type of problem,
and in the present study two sets of values are used. The simulation is performed
with ∆q = 4 m, ∆c = 18 m for zero wind; and ∆q = 0.3 m, ∆c = 8 m in the presence
of wind. To avoid instability in the presence of wind, ∆q is chosen to be of a much
higher resolution than the wind data (20 m in this setup). The time is advanced
according to the events in ForeFire, and the simulation can move ahead according
to a user defined time. To facilitate a comparison between the two models, the sim-
ulation in DEVS model is advanced by the time step computed according to the
Courant–Friedrichs–Lewy (CFL) criteria in LSM.

The mean wind, wherever used, is assumed to be constant in magnitude and
direction. The turbulence is modelled according to a bi-variate Gaussian PDF

G(x− x; t) =
1

2πσ2(t)
exp

{
−(x− x)2 + (y − y)2

2σ2(t)

}
, (14)

where σ2 is the particle displacement variance related to the turbulent diffusion
coefficient D, such that 〈(x− x)2〉 = 〈(y − y)2〉 = σ2(t) = 2Dt. In the present
model, the whole effect of the turbulent processes over different scales is assumed to
be parametrised by the turbulent diffusion coefficient only.

The phenomenon of fire spotting is included according to the discussion provided
in References [16] and [5]. In Reference [16] it is shown that the firebrand distribution
followes a bimodal distribution but only the contribution of the firebrands with short
landing distance is significant because the ones with long-distance landing reach
the ground in charred oxidation state. According to this, the distribution of the
firebrands follows a log-normal distribution [16]

q(`; t) =
1√

2π s(t)`
exp

{
−(ln `− µ(t))2

2 s2(t)

}
, (15)
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where, µ(t) = 〈ln `〉 and s(t) = 〈(ln `− µ(t))2〉 are the mean and the standard
deviation of ln ` respectively. They are stated to be [15]

µ = 1.32I0.26
f U0.11 − 0.02 (16)

s = 4.95I−0.01
f U−0.02 − 3.48 (17)

where U is the magnitude of the mean wind and If = I+It represents fire intensity I
enriched by the tree torching intensity It. The turbulent diffusion coefficient D and
ignition delay τ are also assumed to be constant throughout the simulations. The
value of D is assumed to be 0.15 m2s−1 and the ignition delay for hot air and firebrand
is fixed at 600 s and 60 s respectively. The initial fire intensity is assumed to be
10 000 kWm−1 and the tree torching intensity is fixed at 0.015 kWm−1.

A series of idealised simulation tests are made to investigate the behaviour of
the two models with identical initial conditions. Different simulations are performed
both in the presence and the absence of wind by neglecting and considering the
random processes. The first case evaluates an isotropic growth of the fireline for zero
wind in both the models by neglecting all the random processes. In the second test,
the spread of fireline for different ROS in different directions is studied. The third
test discusses the propagation of the fireline with wind when the ROS is defined
according to the 3% formula (12) and to formula (13). The random processes are
neglected for the first three test cases. The fourth test presents the evolution of
fireline when turbulent processes are included both in the presence and absence of
wind. The last test evaluates the performance when fire spotting also included along
with turbulence. Firebreak lines are also introduced in the last two tests to highlight
the propagation of the fireline while encountering areas of null fuel. It should be
noted that for brevity fire spotting is assumed to be an independent downwind
phenomenon. Hence, the effect of fire spotting is accounted for only the leeward part
of the fireline. Also, to simplify the simulation, the region across and behind the
centre of the initial fireline is demarcated as the leeward side and the windward side
respectively.

5. Discussion

Figure 1 presents the evolution of the fireline for a circular initial condition of
radius 300 m for both LSM based model and DEVS based model. In the absence
of the wind, the initial circular fireline is transported into a isotropic growth, and
the circular contours correspond to 40 min isochronous fronts. It can very well ap-
preciated that with the same value of ROS and initial conditions, the two different
tracking schemes provide an identical evolution of the fireline. Modelling real sit-
uations of fire involves presence of zones without fuel, where the ROS is zero. In
case of firebreak zones, pure LSM and DEVS are inherently unable to simulate the
realistic situations of fire overcoming a fire break. Figure 2 shows that the fireline
fails to propagate across the firebreak when no random processes are included. The
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Figure 1: Evolution in time of the fireline contour without random processes and
zero wind for a) LSM and b) ForeFire. The initial fireline is a circle of radius 300 m.
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Figure 2: Same as Figure 1, but in the presence of a firebreak zone (60 m wide).
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Figure 3: Same as Figure 1, but with a non-homogeneous ROS. The ROS is 0.3 ms−1,
0.2 ms−1, 0.1 ms−1 in upper-left, upper right and bottom quadrants respectively.

evolution is shown only upto 140 min, but an extended run upto 250 min indicates
the limitation of the models to simulate the fire jump across the break zone.

Figure 3 presents the growth of an initial spot fire but with a non-homogenous
ROS in absence of any wind. The different values of the ROS can be attributed to
different fuel types. The fireline propagates with different speed in the three direc-
tions. In the absence of wind, the two tracking methods show an identical behaviour
in simulating situations with constant ROS. This paves way for a comparison of
situations with higher variability and complexity.
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Figure 4: Same as Figure 1, but when the mean wind velocity is 3 ms−1 in the positive
x-direction.
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Figure 5: Same as Figure 4, but when the initial profile is square with side 600 m.

Figure 4 shows the evolution of the firefront with a circular initial profile (with
radius 300 m) in case of a light wind of 3 ms−1 directed in the positive x direction.
The isochronous fronts are plotted at every 20 min and follow an oval shape for both
the models. The fire contours in DEVS based model diverge slightly from the mean
wind field and an increasing flanking fire develops over time. This divergence in the
evolution of firefront occurs due to differences in the computation of the normal for
both the models. The computation of normal for an active fire point in DEVS model
is approximated as the measure of the bisector of the angle between the point and
its left and right neighbours. This fact can be very well appreciated when an initial
square profile is considered.

Figure 5 shows the evolution of the fire spread with square initial profile of
side 600 m. Under the effect of the constant zonal wind, the evolution in LSM
strictly follows the initial square shape, while in ForeFire the initial angular points
are transported to provide a flanking spread. The 3% ROS does not model the
rear and back fire but DEVS generates spurious flanking fire that gives a realistic
behaviour to the fire spread even if due to the approximate construction of the
front normal. The differences in the evolution of flank fireline are also studied by
introducing different ROS for the head, flank and rear directions according to (13).
Here θ is defined as the angle between the normal to the front and the mean wind
direction. Since the normal computation in DEVS approach is approximate, two
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Figure 6: Evolution in time of the fireline contour without random processes with
ROS given by formula (13) where θ is the angle between the outward normal in
a contour point and the mean wind direction for a) LSM and b) ForeFire. The mean
wind velocity is 3 ms−1 in the positive x-direction.
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Figure 7: Same as Figure 6, but where θ is the angle between the line joining a contour
point and the centre of the initial burned area.

separate tests are performed to evaluate effect of the normal on the spread: firstly
when θ is computed according to the definition, and secondly, to ensure identical
angle for both methods, when θ is assumed to be the angle between the line joining
a contour point and the centre of the initial burned area. Figure 6 shows that when
θ is computed in accordance to the definition, the simulations for head and rear
fires are identical, but spurious flanks are observed for DEVS based model. On the
other hand, it is evident from Figure 7 that identical values of θ shows an identical
propagation of the fireline in all directions.

As shown above, in case of firebreak zones pure LSM and ForeFire are inherently
unable to simulate the realistic situations of fire overcoming a fire break. But Figure 8
shows that with the introduction of turbulence the models can simulate the effect
of hot air to overcome firebreak zone. The value of turbulent diffusion coefficient is
assumed to be 0.15 m2s−1. The evolution of the fireline is almost similar for both the
models, though a slight underestimation is visible in ForeFire with respect to the LSM
based model. Stronger turbulence causes a more rapid propagation of the fireline
and an earlier ignition across the firebreak zone. A detailed analysis of the effect of
varying turbulence over long-term propagation with the LSM can be found in [13, 14].

95



0 1000 2000 3000 4000 5000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

X (m)

Y
 (

m
)

(a)

 

 
0
20
40
60
80
100
120
140

Time [min]

0 1000 2000 3000 4000 5000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

X (m)

Y
 (

m
)

(b)

 

 
0
20
40
60
80
100
120
140

Time [min]

Figure 8: Evolution in time of the fireline contour with turbulence in zero wind for
a) LSM and b) ForeFire. The initial fireline is a circle of radius 300 m. The turbulent
diffusion coefficient is 0.15 m2s−1.

0 1000 2000 3000 4000 5000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

X (m)

Y
 (

m
)

(a)

 

 
0
20
40
60
80
100
120
140
160

Time [min]

0 1000 2000 3000 4000 5000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

X (m)

Y
 (

m
)

(b)

 

 
0
20
40
60
80
100
120
140
160

Time [min]

Figure 9: Same as Figure 8, but when the mean wind velocity is 3 ms−1 in positive
y-direction.

Figure 9 presents the effect of inclusion of turbulence with a non-zero wind profile
and 3%-wind ROS. The effect of turbulence is most pronounced in the direction of
the mean wind and it clearly shows that randomisation of the fireline permits the
fire to overcome the obstacle without fuel along with an increased growth in the
flank-fire, back fire and head fire. Both models show almost similar characteristics
in modelling the spread of fire, though the flank fire has a slightly larger spread in
ForeFire. This is due to the fact the particle transportation in the direction of the
front normal is computed with an approximated method.

Another aspect contributing towards the increase in the fire spread and allowing
new fire ignitions across obstacles due to fire spotting is presented in Figure 10.
With inclusion of fire spotting along with turbulence, the evolution of the fire front
is faster in comparison to the effect of turbulence alone as seen in Figure 9. The
region across the fire break has a quick ignition pertaining to the embers flowing
and landing with the effect of wind. It should be noted that within the considered
parametrisation (15) the phenomenon of fire spotting can only be observed in the
presence of the wind. The flank fire and the head fire are also well simulated in both
the models, and again a larger spread out the flanking fires is observed for DEVS.
Fire spotting along with turbulence has a remarkable effect on enhancing the fireline
and igniting secondary fires across the fire break zones.
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Figure 10: Same as Figure 9, but when phenomenon of fire-spotting is also included.

6. Conclusions

This paper describes an approach to model the effects of the random processes
in the propagation of the wildland fires. The propagation of the fire can be split into
a drifting part and a fluctuating part. The fluctuating part is generated by a com-
prehensive statistical description of the system and includes the effects of random
processes in agreement with the physical properties of the system.

The drifting part is modelled in terms of a deterministic position determined by
Eulerian LSM or Lagrangian DEVS with a certain ROS, and the fluctuating part
according to the PDF of the random displacement of points marked as active burn-
ing points. Numerical simulations show that this formulation emerges to be suitable
for both LSM and DEVS based models to manage the real world situations related
to random character of fire e.g., increase in ROS due to pre-heating of the fuel by
hot air and vertical lofting and transporting of firebrands and fire overcoming no
fuel zones. DEVS computes an approximated outward normal of the fire perimeter
that generates differences with the LSM. Such differences result in spurious flanking
fires, which however provide a more realistic fire contour. The two models perform
in agreement with each other and can be complementary to each other for simple
situations, but for increasing complexity the introduction of random processes am-
plifies differences between DEVS and LSM which are mainly due to the approximate
computation of normal.
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