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Abstract: A Fourier approximation method is used for modeling and simu-

lation of fully nonlinear steady waves. The set of resulting nonlinear equations

are solved by Newton’s method. The shoaling of waves is simulated based

on comparisons with experimental data. The wave heights and the angles of

breaking are analysed until the limit of inadequacy of the numerical method.

The results appear quite close to those criteria predicted by the theory of com-

pletely nonlinear surface waves and contribute to provide information on the

study of the relationship between computational modeling and the theory of

steady waves.
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1. Introduction

Waves in water are natural phenomena which have been extensively studied.
The knowledge about its properties is of fundamental importance in several socio-
economical activities, such as coastal environment protection, industrial activities
in deep waters, where an analysis of the impact and force of waves is of extreme
importance. Other not less important activities are applications to sailing, sediment
transport prediction and conversion of waves energy into electrical energy.

The study of wave shoaling and breaking has a deserved remarkable place in
this context, given that the energy of waves is intrinsically associated to the wave’s
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height. Experimental, analytical and computational methods have been used for
investigation of these phenomena. A certain amount of experimental data about
wave shoaling is known. Among these, the field data in [11] and the laboratory
measurements in [6] are classical and used for validation of numerical methods. More
recently Tsai et al. [17] examined criteria used in wave breaking via experimental
results. In their work, steeper bottoms have been studied.

From the analytical and computational points of view, the paper by Rienecker
and Fenton [14] has been one of the first work to propose a method for the simu-
lation of steady completely nonlinear water waves. Denominated as Fourier meth-
ods, this technique does not assume analytical approximations and the solution of
the nonlinear equations for the dynamics of waves is expressed by a Fourier series.
The nonlinear equations obtained are resolved numerically by Newton’s method.
A great number of subsequent papers propose improvements and extension of Fourier
methods to the study of nonlinear free surface waves. Gimenez-Curto and Corniero
Lera [10] present procedures to reduce the computation time of Fourier methods for
very long waves. Assuming Fourier’s expansions of superior orders and including
nonlinear interactions of arbitrary order, Dommermuth and Yue [3, 18] expanded
Fourier methods via a spectral method of superior order and calculated the evolution
of nonlinear waves in several cases, including the interaction between two waves.

Approaches with analytical approximations for the calculation of nonlinear waves
have also been used [19]. Freilich and Guza [9] use variants of Boussinesq equations
to study the shoaling of waves. Fenton [7] deduced expressions of fifth order based
on Stoke’s theory and presented numerical results, comparing them to experimental
data. In this same context, Pihl et. al. [13] examined the shoaling of waves described
by an approximation of sixth order in the presence of a current.

For studies of nonlinear waves dynamics with a more computational emphasis, we
cite Drimer and Agnon [4], which uses the boundary element method and the work
of Bingham and Zhang [1] for an approach of the problem through finite differences
of higher order. Finally, Ducrozet et. al. [5] make a comparative study of two fast
methods for the problem of nonlinear surface waves: the higher order spectral method
and the higher order method of finite differences.

In this paper, we solved the problem of steady completely nonlinear surface waves
by Fourier methods combined with Newton’s method [2]. No analytical approxima-
tion is done and we assume that in a bottom with declivity, waves in any depth behave
as if the bottom were horizontal. The approximation by Fourier series showed to be
a very powerful tool since it allows the direct calculation of accurate solutions, even
for high waves and for every wavelength, except for a soliton’s limit. We explored
this characteristics to study with a certain level of detail, the phenomenon of wave
shoaling.

The mathematical model and the non-dimensionalisation are presented with de-
tails in section 2. The approximation used for nonlinear steady waves is described in
section 3, where we also present the computational approach. On section 4, the addi-
tional modeling and the method to examine the shoaling of waves are examined. In
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subsection 5.1, the numerical results obtained are compared with experimental data.
The maximum height and angle of wave breaking are examined computationally in
subsections 5.2 and 5.3, respectively. Final conclusions are given in section 6.

2. Mathematical model

The mathematical description of the propagation of gravity waves on the wa-
ter surface usually requires some assumptions about the water properties and the
motion performed by it. Thus, we consider a homogeneous, incompressible fluid
with non-rotational motion, where the main restoring force is due to the gravita-
tional acceleration. Additionally, the viscosity and the surface tension are neglected.
Moreover, we will not consider wind forcing.

We consider two-dimensional steady waves in water of finite depth and formulate
the problem in terms of the stream function ψ. In what follows, we will use the same
framework as in [14].

We will use symbol ∗ will denote dimensional variables and all variables are
non-dimensionalised with respect to the acceleration of gravity g∗, and to the av-
erage depth, η∗. Thus, consider the changes of variables x = x∗

η∗
, y = y∗

η∗
, η = η∗

η∗
,

ψ = ψ∗

√
g∗η∗3

, Q = Q∗

√
g∗η∗3

, R = R∗

g∗η∗
. The spatial coordinates x and y indicate the

horizontal and vertical direction with the origin of the Cartesian system lying at
the water bottom. Here, η is the water surface, ψ is the stream function, Q is the
volumetric flow rate per unit wavelength normal to the plane xy and R is the total
energy of the system.

Other non-dimensional variables relevant to the problem are the wave velocity
c = c∗√

g∗η∗
, the wavenumber k is defined by k = k∗η∗ = 2π

λ∗
η∗, where λ∗ is the

wavelength, the wave period is given by τ = τ ∗
√

g∗

η∗
, and the so called arbitrary

reference level D, is non-dimensionalised by D = D∗

η∗
.

We denote by (u, v) the components of the velocity vector u and the stream
function ψ is defined such that u = ∂ψ

∂y
and v = −∂ψ

∂x
. ψ(x, y) satisfies Laplace’s

equation

∂2ψ

∂x2
+
∂2ψ

∂y2
= 0 in 0 < y < η(x). (1)

The boundary conditions that must be satisfied by the stream function are

ψ(x, 0) = 0, (2)

at the origin (background) and

ψ(x, η(x)) = −Q, (3)

on the free surface y = η(x).

47



In equation (3), it is assumed that water flow of moving from right to left is in the
negative direction. On the free surface, the pressure is constant so that Bernoulli’s
equation gives:

1

2

[

(

∂ψ

∂x

)2

+

(

∂ψ

∂y

)2
]

+ η = R. (4)

The boundary conditions involving the wave periodicity are given by:

λ =
2π

k
, (5)

and
λ = cτ. (6)

Next we define the contours of conditions, the condition of periodicity and some
additional equations involving wave height, volume flow and wave speed, it is possible
to obtain a closed system of variables that can be solved by Newton’s method. We
will describe, in the next section, how to to accomplish this, essentially by expanding
the stream function ψ, in Fourier series.

3. Approximation of fully nonlinear steady waves

We present now the problem of fully nonlinear steady waves. The approxi-
mation of the solution is obtained by a spectral method combined with Newton’s
method [2, 14].

We expand ψ(x, y) as

ψ(x, y) = B0y +
N
∑

j=1

Bj

sinh jky

cosh jkD
cos jkx (7)

for the Fourier coefficients Bj . This representation of the stream function assumes
symmetry about the wave crest. The description below, in this section, is essentially
the one given in [14]. We present some of the details here for completeness.

Note that the above expansion satisfies the Laplace’s equation (1) and the bound-
ary condition (2). The boundary condition (3) requires that

B0η +

N
∑

j=1

Bj

sinh jkη

cosh jkD
cos jkx = −Q, (8)

and the equation (4) takes the form

1

2

[

k
N
∑

j=1

jBj

sinh jkη

cosh jkD
sin jkx

]2

+
1

2

[

B0 + k
N
∑

j=1

jBj

cosh jkη

cosh jkD
cos jkx

]2

+ η = R,

(9)
for all x.
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In these approximations, we observe that the arguments of sinh jkη, cosh jkη and
cosh jkD grow up rapidly with j. To avoid instability and numerical errors in the
divisions in (9), we use the approximation

cosh jkη

cosh jkD
∼

sinh jkη

cosh jkD
∼ exp [jk(η −D)], (10)

for sufficiently large values of j.
The choice of an appropriate value for the parameter D is important. We will

adopt the non-dimensional value D = 1, suggested by Rienecker & Fenton [14], which
corresponds to a value of relative water depth and characterises a regime of of water
intermediate.

We will now impose equations (8) and (9) on 2N collocation points over one wave-
length. This allows a discretisation of the problem. By symmetry, we can work with
only N +1 points from the wave crest to the trough. Thus, we use the discretization
xm = mλ

2N
, m = 0, 1, . . . , N . From λ = 2π

k
it follows that kxm = mπ

N
. Moreover,

we abbreviate the notation of η(xm), u(xm, ym) e v(xm, ym) to ηm, um and vm. Thus,
from (8) and (9), we have:

B0ηm +

N
∑

j=1

Bj

sinh jkηm
cosh jkD

cos

(

jmπ

N

)

+Q = 0, (11)

1

2
u2m +

1

2
v2m + ηm −R = 0, (12)

for m = 0, 1, . . . , N , where

um = B0 + k

N
∑

j=1

jBj

cosh jkηm
cosh jkD

cos

(

jmπ

N

)

,

vm = k

N
∑

j=1

jBj

sinh jkηm
cosh jkD

sin

(

jmπ

N

)

.

We now have 2N+2 nonlinear equations. However, these involve 2N+5 variables,
which are ηj , Bj, (j = 0, 1, . . . , N), k,Q and R. Thus, in principle, we need three
further equations.

As the mean non-dimensionalised wave height is unity, we can write
∫

S

η dS = 1, (13)

where S is the horizontal distance from the crest to the trough of the wave. Dis-
cretisation x0 and xN represent the abscissas of these extremities and using the
trapezoidal rule in (13), we have

1

2N

[

η0 + ηN + 2
N−1
∑

j=1

ηj

]

− 1 = 0. (14)
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In certain situations can solve the problem of nonlinear waves for prescribed
values of the height H and the wave period τ . The height H is merely the difference
between the elevation of the crest η0 and the height of the wave trough ηN . Hence,

η0 − ηN −H = 0. (15)

By combining equations (5) and (6), which involve the wave period, we have,

kcτ − 2π = 0. (16)

We obtained then, from (14)– (16), three new equations. We introduced, however,
a new variable to the system; the wave velocity c. Therefore, let us analyse in more
detail this quantity.

Let cE the Eulerian mean velocity cE of fluid. For steady waves, we have the
relation [14]

c− cE +B0 = 0. (17)

Alternatively, one can consider the drift velocity cs of the fluid particle, which is
the mass transport velocity. In steady wave regime, with unit mean depth, volume
flow Q is equal to the mean velocity by which the fluid particle moves. Therefore,
the speed of mass transport can be given by

c− cs −Q = 0. (18)

Finally, the 2N + 6 equations (11), (12),(14)–(16), (17) or (18) form a closed
system for the variables (ηj , Bj(j = 0, 1, . . . , N), k, Q,R, c).

4. Wave shoaling

The shoaling of waves occurs when they propagate in intermediary waters in
a variable depth zone, gradually decreasing. In this study, it is assumed that the
changes in depth occur in a smooth way. Thus, it can be assumed that the wave
does not reflect and can adapt to the new depth. Due to energy conservation, when
the group velocity, Cg, decreases, the wave tends to increase its height, or to shoal,
until the subsequent wave break.

By using the wave refraction theory, it can be shown that the wave period is also
constant during the process of shoaling. This follows from the conservation of crests
for steady waves.

The phenomenon of incident waves shoaling on a coastal region has been well
approximated by Rienecker& Fenton [14], assuming that if the bottom’s inclination
is less than 4, 5◦ the wave acts as if it is steady and with a constant local depth.
Employing this hypothesis, a simple approximation neglects the dissipation by fric-
tion with the bottom and assumes that the wave period and the energy flux remain
constant from a depth to another. That is, we assume that the conservation of crests
occurs and there is no reflection of energy with decreasing of depth.
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4.1. Method

To describe the shoaling of waves, due to the reduction of depth, the system of
equations presented in section 3 must be extended to include the additional variables;
the wave height H and the average flux of energy F , of which the non-dimensional
value can be written as [14]:

F =
1

2
c3 −

3

2
c2Q+ c

(

2R− 1−
1

2
QB0 − η2

)

−Q(R− 1), (19)

where

η2 =
1

2N

[

η20 + η2N + 2

N−1
∑

j=1

η2j

]

.

The solution of the system from the starting depth provides the flux of energy ac-
cording to equation (19). We will model the shoaling of waves by using a discrete
and finite number of depths. For successive depths, the period and the flux of energy
will be preserved, while the wave height H will be the variable of the problem. Thus,
we must include in the system, additional equations to specify the wave height for
the starting depth and the flux of energy for subsequent depths.

The additional equations are

f2N+7 =
1

2
c3 −

3

2
c2Q+ c

(

2R− 1−
1

2
QB0 − η2

)

−Q(R− 1)− F = 0

and

f2N+8 = H −
H∗

0

η∗0
= 0 for the initial depth, and

f2N+8 = F − F0 = 0 for the subsequent depths,

where F0 is the non-dimensional energy flux. We use Newton’s method to solve the
resulting discrete system.

An initial estimate for the energy flux is given as a function of the other variables.
From Stokes approximation, we have

F =
π

8

c2H2

τ

sinh k cosh k + k

sinh2 k
.

This estimate is necessary only for the first depth. Subsequently, for small changes
in the depth, the following solution can be used as a good starting approximation
for the problem, provided that the change in depth is calculated in the new non-
dimensionalisation.

Suppose that the sub-index 1 is the solution for a certain depth and sub-index 2,
the starting approximation of the next depth. Thus, the change of depth occurs as
follows, η∗2 = η∗1 · r. That is, r = η∗2/η

∗
1 is the ratio between the successive depths.
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To obtain a satisfactory starting estimation of the variables to be used in the
new depth, we assume the change in depths to be smooth. With this, we neglect
the reflection of waves and we can use the last solution obtained as a good starting
approximation for the next depth, as long as it is non-dimensionalised according to
the new depth. That is,

H2 =
H∗

2

η∗2
=
H∗

1

η∗2
=
H1η

∗
1

η∗2
=⇒ H2 =

H1

r
,

c2 =
c∗2

(gη∗2)
1

2

=
c∗1

(gη∗2)
1

2

=
c1 (gη

∗
1)

1

2

(gη∗2)
1

2

=⇒ c2 =
c1

r
1

2

,

k2 = k∗2η
∗
2 = k∗1η

∗
2 =

k1
η∗1
η∗2 =⇒ k2 = k1r,

Q2 =
Q∗

2

[g(η∗2)
3]

1

2

=
Q∗

1

[g(η∗2)
3]

1

2

=
Q1 [g(η

∗
1)

3]
1

2

[g(η∗2)
3]

1

2

=⇒ Q2 =
Q1

r
1

2

,

R2 = 1 +
R∗

2

gη∗2
= 1 +

R∗
1

gη∗2
= 1 +

(R1 − 1)gη∗1
gη∗2

=⇒ R2 = 1 +
R1 − 1

r
.

For the next non-dimensionalisations, the spatial discretisation is required, indicated
by j, for j = 1, 2, . . . , N . We will have

(Bj)2 =
(B∗

j )2

gη∗2
=

(B∗
j )1

gη∗2
=

(B∗
j )1gη

∗
1

gη∗2
=⇒ (Bj)2 =

(Bj)1

r
1

2

.

As the origin of the system is at the water bottom, the non-dimensional form of the
free surface elevation is expressed as

(ηj)2 = 1 +
(η∗j )2

η∗2
= 1 +

(η∗j )1

η∗2
= 1 +

[(ηj)1 − 1]η∗1
η∗2

=⇒ (ηj)2 = 1 +
(ηj)1 − 1

r
.

Yet, despite these remain constant, the non-dimensional energy flow and wave period
are

F2 =
F ∗
2

ρ [g3(η∗2)
5]

1

2

=
F ∗
1

ρ [g3(η∗2)
5]

1

2

=
F1 ρ [g

3(η∗1)
5]

1

2

ρ [g3(η∗2)
5]

1

2

=⇒ F2 =
F1

r
5

2

,

τ2 = τ ∗2

(

g

η∗2

)
1

2

= τ ∗1

(

g

η∗2

)
1

2

= τ1

(

gη∗1
gη∗2

)
1

2

=⇒ τ2 =
τ1

r
1

2

.

5. Results

On this section we will show the results obtained. These are organised in 10 cases
on which we have experimental data for comparison. These cases, described in detail
below, are referenced as waves 1 to 3 and from 4(a) to 4(g).
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5.1. Comparison with experiments

For comparison with the experiments, we will use wave data obtained in beaches
and in testing tanks. These experiments were originally related in Hansen e Svend-
sen [11] and in Eagleson [6] and were used in comparisons with other methods and
theories. See, for example [14] and [16].

The experimental data were obtained from uniform beach slope of 1/35 [11] and
from slope of 1/15 [6] in laboratory tanks. The data were collected until the wave
breaking, point in which the modeling presented in this paper is no longer applicable.

Wave H0 τ0 H∗
0 (mm) τ ∗0 (s)

1 0,31 5,72 93 1
2 0,13 9,55 39 1,67
3 0,14 19,04 42 3,33

Table 1: Initial values of heights and periods for waves 1 to 3. Experimental data of
Hansen e Svendsen [11].

For the first simulations we used the parameters D = 1, the number N of terms
for the Fourier’s expansions in (11) and (12) equals to 16 and r = 0, 999. In table 1,
we summarised the cases of waves 1 to 3 which we are now going to examine with
the simulations done with the present method.

In figures 1(a) and 1(b) we show, respectively, the wave height and its phase
velocity as a function of depth, for wave 1. With non-dimensional values of the
initial height and the initial period, given respectively, by H0 = 0, 31 and τ0 = 5, 72,
an excellent agreement between the simulation and the experimental data is visually
observed, before the wave breaks.

Wave 2 is shorter and has a greater initial period. The comparison for this case
is represented in figure 2.

In figure 3, similar comparisons are done for wave 3 which presents a significantly
greater period than the former ones. Again, we observe that the simulations present
a good agreement with the experimental data. Particularly, the shoaling of waves is
remarkable, with the decrease of the depth, in all cases until values very close to the
point of break of the wave.

In the following cases, we show the comparison with experimental data [6], ob-
tained in a wave tank with uniform slope of 1/15. Seven simulations are reported,
where the dimensional parameters that define them are in table 2. In this table it is
also shown the values of initial waves steepness, which is given by ε = H∗

λ∗
, according

to Eagleson [6] and according to our numerical simulations. The reference level is
D = 1 in all cases except in case (f), where D = 0, 9. This difference is due to the
wave height being a little smaller, in this case. The number of terms on the Fourier
expansions used for the next simulations is N = 32.
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Figure 1: (a) Wave height as a function of water depth. (b) Phase velocity of the
wave function of depth for wave 1. The solid line indicates the data obtained from
numerical simulations with the present method and the points indicate the data
obtained experimentally by [11].

Figure 2: Wave height as a function of water depth for wave 2. The solid line
indicates the data obtained from numerical simulations with the present method and
the points indicate the data obtained experimentally by [11].

Figure 4 shows the wave shoaling coefficient, given by H
H0

, as a function of the
respective relative water depth for waves 4(a) to 4(g). This coefficient represents
only the relation of the wave height with the decrease of the depth, while the relative
depth, indicates if the wave is in shallow, intermediate or deep waters. In all 7 cases,
we had an intermediate water regime according to the ratio 0, 05 > η∗

λ∗
< 0, 5. We

observed on this regime a simulated shoaling very close to reality.

On next subsections we analyses with detail the height and the shape of the waves
close to their break, using the computational tool we developed and validated here.
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Figure 3: Wave height as a function of water depth for wave 3. The solid line
indicates the data obtained from numerical simulations with the present method and
the points indicate the data obtained experimentally by [11].

Wave η∗0 (feet) H∗
0 (feet) τ ∗0 (s) H∗

0/λ
∗
0 (according to [6]) H∗

0/λ
∗
0 (simulated)

4(a) 1,75 0,230 0,938 0,0528 0,051739
4(b) 1,75 0,234 1,101 0,0396 0,039545
4(c) 1,75 0,357 1,105 0,0598 0,059963
4(d) 1,75 0,440 1,235 0,0611 0,061695
4(e) 1,75 0,354 1,389 0,0420 0,041634
4(f) 1,75 0,186 1,428 0,0209 0,021037
4(g) 1,75 0,265 1,684 0,0237 0,023999

Table 2: Initial values of water depth, the height, the period and the slope according
to the experimental data of [6] and the slope calculated by the present method.

5.2. Breaking height

Waves propagating in the shoaling zone, in intermediate waters, become unstable
and break when the velocity of the water particle on the wave crest becomes equal
or greater than the phase velocity of the wave. At breaking, the wave height is
limited by the depth and the wavelength. For a given depth and wave period, there
is a maximum limit for the wave height, called wave breaking height. According to
Stoke’s theory, in intermediate waters, the breaking height is H

η
= 0, 78 [15, p. 06].

In our model, η(x) is by definition only defined for each x. Therefore, the method
used for the solution will not apply until the physical limit of the wave break. Before
the break, the wave surface becomes multivalued and thus not modelled by a function.
In the specific case of Newton’s method, it will diverge.

We defined as computational wave breaking height and denoted by
(

H∗

η∗

)

b
, the
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Figure 4: Wave’s shoaling coefficient a function on the depth of water to the
waves 4 (a) to 4 (g) (see table 2). The solid line indicates the data obtained from
numerical simulations with the present method and the points indicate the data
obtained experimentally by [6].

last height for which there has been convergence of Newton’s method described in
subsection 4.1.

Figure 5 shows the evolution of parameter height by depth, given by H∗/η∗, the

computation wave breaking height
(

H∗

η∗

)

b
as a function of parameter η/λ, and the

depth relative to the wavelength. In this figure, cases of waves 1, 2 and 3 are shown.
On curve 5(a) with height and initial periodH0 = 0, 31 and τ0 = 5, 72 respectively,

the initial relative depth is η0
λ0

= 0, 214 and the relative depth on the wave break is
η

λ
= 0, 13256. This indicates that the whole shoaling process until the break of the

wave happened in intermediate waters.
On curve 5(b), representing wave 2, the initial relative depth is η0

λ0
= 0, 1128 and

the relative depth on the wave break is η

λ
= 0, 0516. This wave also had the process

of shoaling and breaking in intermediate waters, but it breaks practically in shallow
waters and with a greater height.

The wave represented on curve 5(c) is significantly longer and presents practi-

cally all of its shoaling process in shallow waters, breaking with
(

H∗

η∗

)

b
= 0, 755 on

a relative depth of η

λ
≈ 0, 027. We observed that the model and the computational

method predict a breaking height very close to the observed experimentally.
The cases referred to waves 4(a) to 4(g) on table 2 are represented and summarised
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Figure 5: The evolution of the parameter H∗/η∗ and computational wave’s breaking

height,
(

H∗

η∗

)

b
a function of depth relative to the wavelength, η/λ. In figure (a), we

show the results referring to figure 1, in figure (b), referring to figure 2 e in figure (c),
referring to figure 3.

in figure 6. We can verify that all the shoaling processes until the break of the waves,
occur in intermediate waters. Furthermore, we see that the computational breaking
heights are so that H

η
≈ 0, 7. This is a value that reaffirms the good performance of

the method to model the phenomenon of wave shoaling.

5.3. Waves profile and their breaking angles

By using Stokes theory, it can be shown [12] that the breaking angle of a wave
is 120◦. We are going to use the spectral method described in this paper to estimate
the computational breaking angle α, i.e., the one until when we can obtain convergence
of Newton’s method used for solving the system of nonlinear equations which governs
the water waves.

Figures 7 to 9 represent the cases of waves 1 to 3, respectively.
Figures are double: part (I) shows the wave profile on the initial instant and

part (II), at the moment of the computational wave break. A horizontal straight line
is included in all figures to represent the average depth. To estimate the value α, we
used a straight line passing by three points next to the crest, using symmetry, and
calculated the line’s angular coefficient.

It can be verified that the way the wave shoals depends directly on the wavelength.
For waves of greater length, we note that the wave’s trough becomes horizontally
longer. With this, the crest has a more pronounced increase on the wavelength.
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Figure 6: The evolution of the parameter H∗/η∗ and computational wave’s breaking

height,
(

H∗

η∗

)

b
a function of the relative depth of water referring to initial data

contained in table 2 and also shown in figure 4.

Figure 7: Wave profile: The figure (I) shows the wave profile at the initial moment,
with η∗0 = 300 mm, H∗

0 = 93 mm and τ ∗0 = 1, 0 s. The figure (II) shows the wave
profile at the moment of the break, In this case, the depth of water is indicated by
straight line η∗ = 160, 05 mm.
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Figure 8: Wave profile: Figure (I) shows the wave profile at the initial moment, with
η∗0 = 300 mm, H∗

0 = 39 mm and τ ∗0 = 1, 67 s. The figure (II) shows the wave profile
at the moment of breaking, In this case, the depth of water is indicated by straight
line is η∗ = 93, 52 mm.

Figure 9: Wave profile: Figure (I) shows the wave profile at the initial moment, with
η∗0 = 300 mm, H∗

0 = 42 mm and τ ∗0 = 3, 33 s. The figure (II) shows the wave profile
at the moment of breaking, In this case, the depth of water is indicated by straight
line is η∗ = 117, 37 mm.
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We can observe that the computational breaking angles of waves 1, 2 and 3 were
134, 12◦, 142, 64◦ and 126, 20◦ respectively. The first two are in intermediate waters,
while wave 3, which propagates in shallow waters, has the smaller breaking angle.

We then revisited the cases of waves 4(a)-4(g), presented in subsection 5.1 and
showed at table 2. Table 3 shows the heights and periods of waves at the initial
moment, apart from the water depths and computational breaking angles. The
initial depth is equal to η∗0 = 1, 75 feet, in all cases.

Wave H∗
0 (feet) τ ∗0 (s) η∗f (feet) α (degrees)

4(a) 0,230 0,938 0,3817 124,14
4(b) 0,234 1,101 0,4110 123,60
4(c) 0,357 1,105 0.6066 122,48
4(d) 0,440 1,235 0,7140 119,30
4(e) 0,354 1,389 0,6591 124,48
4(f) 0,186 1,428 0,3989 130,49
4(g) 0,265 1,684 0,5644 128,58

Table 3: Data for the wave profiles. The values of the initial heights and initial wave
periods as well as the water depths and angles formed on the crests of the waves at
the moment when they break.

Figure 10: Profile of waves of the case (d) of table 3: Figure (I) shows the wave profile
at the initial moment and the figure (II) shows the wave profile at the moment of
the break.
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To calculate the breaking angles in all cases given at table 3, tree points subse-
quent to the wave crest were used. We notice that all breaking angles were practically
identical and slightly greater than the limit for the breaking angle given in the liter-
ature.

Figure 10 shows the profile of the waves of case 4(d) at table 3. The remaining
cases have a similar graphical aspect.

Thus as waves 1, 2 and 3, waves 4(a)-4(g) present a common characteristic of
shoaling which is the decrease in the wavelength and an increase in its height, with
the trough becoming horizontally longer. This is the eminent and favourable aspect
to the wave break.

6. Conclusion

A Fourier approximation method was employed for modeling and simulating fully
nonlinear steady water waves. The resulting set of nonlinear equations was solved
by Newton’s method. After a careful non-dimensionality, we assumed that in an
inclined bottom, the waves, in any depth, behave as in horizontal bottoms. An
iterative method was described for the study of wave shoaling.

A set of experimental data was used to define the initial states in 10 study cases.
From those, we could validate the method which presented excellent agreement with
the measurements. An analysis of the so called wave breaking height and compu-
tational breaking angle was done and values were obtained for comparison between
simulations and the theoretical criteria of breaking height and angle. These results,
therefore contribute to the knowledge of existing relationships between analytical-
computational approximation methods and the theory of nonlinear surface waves.
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