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1. Introduction

Simulation of free surface pipe or open channel flow plays an important role
in many engineering applications such as storm sewers, waste or supply pipes in
hydroelectric installations, etc.

The free surface flows are described by a newtonian, viscous and incompressible
fluid through the three-dimensional incompressible Navier-Stokes equations. The use
of the full three-dimensional equations leads to time-consuming simulations. There-
fore, for specific applications such as shallow water, one can proceed to a model
reduction preserving some of the main physical features of the flow leading to the
so-called shallow water equations. This is one of the most challenging issues that we
address with the obvious consequence to decrease the computational time. During
these last years, many efforts were devoted to the modelling and the simulation of
free surface water flows (see for instance [14, 13, 6, 5, 10, 9, 8, 11, 1, 7, 2, 3] and the
reference therein).

The classical shallow water equations are usually derived from the
three-dimensional Navier-Stokes equations (or the two-dimensional Navier-Stokes
equations) by vertical averaging. It leads to a two-dimensional or a one-dimensional
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shallow water model. For instance, Gerbeau and Perthame [10] study the full
derivation of the one-dimensional shallow water equations from the two-dimensional
Navier-Stokes equations while [11] considers the two-dimensional equations obtained
from the three-dimensional one. In both cases, the so-called “motion by slices” is
obtained. This property ensures that the horizontal velocity does not depend upon
the vertical coordinate. As a consequence, one can perform the model reduction
by vertical averaging. Following the applications under consideration, one can take
into account as a source term the Coriolis effects, the topography, the friction, the
capillary effects, the geometry, etc.

Unlike the previous works, we propose to study the full derivation of a one-

dimensional free surface flows for pipe and open channel from the
three-dimensional Navier-Stokes equations. In particular, we propose to revisit
the work by Bourdarias et al. [3] done in the context of the three-dimensional Euler
equations. The use of the Navier-Stokes equations with suitable boundary conditions
allows first to establish the crucial “motion by slices” property, and second to include
the friction (linear or non-linear) into the derivation. Let us emphasize that it was
not possible to deal with in the framework of Bourdarias et al. [3]. More precisely,
this property was assumed from the beginning and the friction was added to the
obtained averaged equations.

The paper is organized as follows. In Section 2, we recall the full incompressible
Navier-Stokes equations defining the boundary conditions including a general friction
law, and we fix the notations. The “motion by slices” property under large Reynolds
number flows is obtained through the hydrostatic equations (approximation) in Sec-
tion 3. Next, these equations are averaged through the pipe or open channel section
assumed to be orthogonal to the main flow direction. Finally, we obtain the one-
dimensional free surface model. Since the constructed model is similar to the one
by Bourdarias et al. [3], the issues of the numerical approximation is not addressed
here. Please, refer to [1] or [4].

2. The incompressible Navier-Stokes equation and its closure

In this section, we fix the notations of the geometrical quantities involved to
describe the thin domain representing a pipe or an open channel. In particular,
without loss of generality (see Remark 2.1), we consider the case of pipe with circular
section.

2.1. Geometrical settings

Let us consider an incompressible fluid confined in a three-dimensional rigid do-
main P representing a pipe or a channel, of length L:

P :=
{
(x, y, z) ∈ R

3; x ∈ [0, L], (y, z) ∈ Ωp(x)
}

where the section Ωp(x), x ∈ [0, L], is

Ωp(x) = {(y, z) ∈ R
2; y ∈ [α(x, z), β(x, z)], z ∈ [0, 2R(x)]}
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as displayed on figure 1(a). Both flows and pipe are assumed to be oriented in the
i-direction.

With these settings, we define the free surface section by

Ω(t, x) = Ωp(x) ∩ {(y, z) ∈ R
2; 0 6 z 6 H(t, x, y)}, t > 0, x ∈ [0, L]

assumed to be orthogonal to the main flow direction. H(t, x, y) is the local water
elevation from the surface z = 0 in the Ωp(x)-plane. R(x) stands for the radius of
the pipe section S(x) = πR2(x), α(x, z) (resp. β(x, z)) is the left (resp. the right)
boundary point at elevation 0 6 z 6 2R(x) as displayed on figure 1(b).

On the wet boundary (part of the boundary in contact with water), we define
the coordinate of a point m ∈ ∂Ω(t, x) := Γb(t, x), t > 0, x ∈ [0, L], by (y, ϕ(x, y))
where

Γb(t, x) = {(y, z) ∈ R
2; z = ϕ(x, y) 6 H(t, x, y)} .

Then, we note n =
m

|m| the outward unit vector at the point m ∈ ∂Ω(t, x), x ∈ [0, L]

as represented on figure 1(b). The point m also stands for the vector ωm where
ω(x, 0, b(x)) defines the main slope elevation of the pipe with b′(x) = sin θ(x).

On the free surface, we define the coordinate of a point m ∈ ∂Ω(t, x) := Γfs(t, x),
t > 0, x ∈ [0, L], by (y,H(t, x, y)) where

Γfs(t, x) = {(y, z) ∈ R
2; z = H(t, x, y)} .

Finally, we note

h(t, x, y) = H(t, x, y)− ϕ(x, y)

the local elevation of the water.

(a) Configuration (b) Ω-plane

Figure 1: Geometric characteristics of the pipe

Remark 2.1 One can easily adapt this work to any realistic pipe or open chan-
nel by defining appropriately the previous quantities. For instance, in the case of
“horseshoe” section (see figure 2(a)), the section Ωp(x), x ∈ [0, L], is given by

Ωp(x) = ΩH(x) ∩ ΩR(x)
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where

ΩH(x) =
{
(y, z) ∈ R

2; y ∈ [α(x, z), β(x, z)], z ∈ [0, H(x)]
}

and

ΩR(x) = {(y, z) ∈ R
2; y ∈ [α(x, z), β(x, z)], z ∈ [H(x), R(x)]} .

H is the height of the trapezoidal basis and R is the radius of the upper part of the
“horseshoe”. A second example is represented on figure 2(b).

(a) “horseshoe” section (b) open channel

Figure 2: Example of a pipe and a open channel geometry

2.2. The water flow model

In the domain P, we assume that the flow is incompressible and the pipe is
always partially filled (otherwise we have to deal with pressurized flows that we omit
here, please see [3] for details). Thus, we consider the incompressible Navier-Stokes
equations with a prescribed general wall law conditions including friction on the wet
boundary and a no stress one on the free surface. We complete the system with
inflows and outflows conditions at the upstream and downstream ends.

The governing equations for the motion of an incompressible fluid in [0, T ]× P,
T > 0 are given by

{
div(ρ0u) = 0 ,

∂t(ρ0u) + div(ρ0u⊗ u)− divσ − ρ0F = 0 ,
(1)

where u =

(
u
v

)

is the velocity fields with u the i-component and v =

(
v
w

)

the Ω-component, ρ0 is the density of the fluid at atmospheric pressure and F =

−g





− sin θ(x)
0

cos θ(x)



 is the external gravity force of constant g. The total stress tensor

can be written:

σ =

(
−p+ 2µ∂xu R(u)t

R(u) −pI2 + 2µDy,z(v)

)

(2)
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where I2 is the identity matrix, µ is the dynamical viscosity and R(u) is defined by

R(u) = µ (∇y,zu+ ∂xv). ∇y,zu =

(
∂yu
∂zu

)

is the gradient of u with respect to (y, z).

Noting X t the transpose of X , we define the strain tensor Dy,z(v) with respect to
the variable (y, z):

2Dy,z(u) = ∇y,zv+∇t
y,zv .

2.3. The boundary conditions

The Navier-Stokes system (1)–(2) is completed with suitable boundary conditions
to introduce the border friction term on the wet boundary. On the free surface, we
prescribe a no-stress condition.

On the wet boundary

For pipe flow calculations, the Darcy-Weisbach equation, valid for laminar as well
as turbulent flows, is generally adopted. Roughly speaking, such formula relates
losses h occurred during flows and it reads:

h = Cf
L

D

U2

2g

where L, D, U are the pipe length, the pipe diameter and the velocity. The friction
factor Cf , rather being a simple constant, turns out to be a factor that depends upon
several parameters such as the Reynolds number Re, the relative roughness δ, the
Froude number Fr, the Mach number Ma, geometrical parameters, etc., and cannot
be set as a constant. Following the type of the material, rough or smooth pipe,
leaves Cf depend upon less quantities and lead to several expressions. An empirical
transition function for the region between smooth pipes and the complete turbulence
zone has been proposed by Colebrook:

1
√

Cf

= −0.86 ln

(

δ

3.7D
+

2.51

Re

√
Cf

)

where δ is the roughness of the material.
Because of the extreme complexity of the rough surfaces, most of the advances in

understanding have been developed around experiments leading to charts such as the
Moody-Stanton diagram, expressing Cf as a function of the Reynolds number Re,
the relative roughness and some geometrical parameters depending on the material.
This yields to several formula depending on the modelling, for instance Chézy and
Manning which are well-known by the engineers community, see for instance [16, 15].

For laminar flow, the effects of the material roughness can be ignored due to
a presence of a thin laminar film at the pipe wall. Then, it can be shown that

the Darcy-Weisbach equation reduces to Cf =
64

Re
that we note Cf = Cl in the

sequel. And, the losses are directly proportional to the velocity. When increasing the
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Reynolds number Re, the thin laminar film becomes unstable and causes turbulence
increasing the head loss. Thus, the dependence on the Reynolds number Re can be
neglected and the head loss is almost directly proportional to U2. The value of the
friction factor, that we note Cf = Ct in the sequel, can be read on diagrams.

In particular, this motivates the use of the following general friction law:

k(u)u = Cf(|u|)u = Clu+ Ct|u|u, Cl > 0, Ct > 0 (3)

where Cf stands for the friction factor. We do not intend in this work to define
precisely the friction law but instead, we want to directly include it in its general
form to explicitly show its dependency on physical parameters in the present model
reduction.

Thus, on the inner wall ∂Ωp(x), ∀x ∈ (0, L), we assume a wall-law condition
including a general friction law:

(σ(u)nb) · τbi = ρ0k(u)u · τbi , x ∈ (0, L), (y, z) ∈ Γb(x), i = 1, 2

where τbi is the i
th vector of the tangential basis and nb stands for the unit outward

normal vector:

nb =
1

√

(∂xϕ)2 + n · n

(
−∂xϕ
n

)

with n =

(
−∂yϕ
1

)

the outward normal vector in the Ωp-plane. Writing the wall-law

condition in its vectorial form (i.e. the tangential constraints),

σ(u)nb − (σ(u)nb · nb)nb = ρ0k(u)u, t > 0, x ∈ (0, L), (y, z) ∈ Γb(t, x) ,

one can split up the i−component and the (j,k)−components. Thus, the wall-law
boundary conditions are

R(u) · n (n · n− (∂xϕ)
2) + 2µ∂xϕ (Dy,z(v)n · n− ∂xu (n · n))

=
(
n · n+ (∂xϕ)

2
)3/2

ρ0k(u)u , (4)

2µ(∂xϕ)
2 (Dy,z(v)n− n) + ∂xϕR(u) (n · n− (∂xϕ)

2)

=
(
n · n+ (∂xϕ)

2
)3/2

ρ0k(v)v . (5)

supplemented with a no-penetration condition:

u · nb = 0, t > 0, x ∈ (0, L), (y, z) ∈ Γb(t, x)

i.e.

u∂xϕ = v · n, t > 0, x ∈ (0, L), (y, z) ∈ Γb(t, x) . (6)
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On the free surface boundary

For the sake of simplicity, on the free surface we assume a no-stress condition:

σ(u)N fs = 0, t > 0, x ∈ (0, L), (y, z) ∈ Γfs(t, x)

where

N fs =
1

√

(∂xH)2 + nfs · nfs

(
−∂xH
nfs

)

where nfs =

(
−∂yH

1

)

is the outward normal vector to the free surface.
Finally, as done before, splitting up the horizontal and the Ωp-component, the

free surface boundary conditions read

(p− 2µ∂xu)∂xH +R(u) · nfs = 0 , (7)

R(u)∂xH + (p− 2µDy,z(v))nfs = 0 . (8)

Introducing the indicator function Φ of the fluid region

Φ(t, x, y, z) =

{
1 if ϕ(x, y) 6 z 6 H(t, x, y) ,
0 otherwise

and because of the incompressibility condition, the divergence equation can be ex-
pressed as follows:

∂tΦ + ∂x(Φu) + divy,z(Φv) = 0 . (9)

3. The averaged model

The technique presented in this section is the one introduced by Gerbeau and
Perthame [10] in the context of the reduction of the two-dimensional incompressible
Navier-Stokes model to the one-dimensional shallow water equations. Here, instead,
we proceed to the reduction of the three-dimensional incompressible Navier-Stokes
equations to a one-dimensional shallow water equations.

3.1. Dimensionless Navier-Stokes equations

Thus, in the sequel we consider the non-dimensional form of the Navier-Stokes
system using the shallow water assumption by introducing a “small” parameter so
that

ε =
D

L
=

W

U
=

V

U
≪ 1

where U, V = (V,W ) are the characteristic speeds in the i−direction and the
(j,k)−direction.
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We introduce a characteristic time T and a characteristic pressure P such that

T =
L

U
and P = ρ0U

2. The dimensionless quantities of time t̃, coordinate (x̃, ỹ, z̃)

and velocity field (ũ, ṽ, w̃), noted temporarily by a ·̃, are defined by

t̃ =
t

T
, (x̃, ỹ, z̃) =

(x

L
,
y

D
,
z

D

)

, (ũ, ṽ, w̃) =
( u

U
,
v

W
,
w

W

)

with the modified friction factor Cf/U that we write in the sequel Cf .
Let us define the following non-dimensional numbers:

Fr Froude number following the Ω-plane : Fr = U/
√

gD ,

FL Froude number following the i-direction : FL = U/
√

gL ,
Re Reynolds number with respect to µ : Re = ρ0UL/µ .

Using these new variables in Equations (1), dropping the ·̃, ordering the terms
with respect to ε, the dimensionless incompressible Navier-Stokes system becomes:

div(u) = 0 (10)

∂t(u) + ∂x(u
2) + divy,z(uv) + ∂xp = −sin θ(x)

F 2
L

+ divy,z

(
R−1

e

ε2
∇y,zu

)

(11)

+Rε,1(u)

∇y,zp =





0

−cos θ(x)

F 2
r



 +Rε,2(u) (12)

where
Rε,1(u) = R−1

e (∂x (2∂xu) + divy,z (∂xv)) = O(R−1
e )

and
Rε,2(u) = R−1

e

(
∂x
(
∇y,zu+ ε2∂xv

)
+ divy,z (2Dy,z(v))

)

−ε2 (∂t(v) + ∂x(uv) + divy,z(v⊗ v)) ,

= R−1
e (∂x (∇y,zu) + divy,z (2Dy,z(v))) +O(ε2) ,

= O(R−1
e ) +O(ε2) .

The first component of the wall-law boundary condition (4) becomes:

R−1
e

ε
∇y,zu · n =

(n · n+ ε2(∂xϕ)
2)

3/2 k(u)
U

u

(n · n− ε2(∂xϕ)2)

εR−1
e

(
2∂xϕ (Dy,z(v)n · n− ∂xu (n · n))

(n · n− ε2(∂xϕ)2)
+ ∂xv · n

)

,

= −K(u) +O(ε) +O(εR−1
e )

(13)

where we make use of the notations

K(u) =
√
n · nk(u)

U
u and ∇y,zu · n := ∂nu
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which are respectively the friction term and the normal derivative of u in the Ωp-
plane.

The second component of the wall-law boundary condition (5) becomes:

R−1
e ∇y,zu =

ε2 (n · n+ ε2(∂xϕ)
2)

3/2
ρ0

k(v)
U

v

∂xϕ(n · n− ε2(∂xϕ)2)

−2ε3R−1
e ∂xϕ

2 (Dy,z(v)n− n)

∂xϕ(n · n− ε2(∂xϕ)2)
− ε2∂xv · n ,

= O(ε2) +O(ε3R−1
e )

(14)

On the free surface, the boundary conditions (7)-(8) are now

R−1
e ∇y,zu · nfs = −ε2

(
(p− 2R−1

e ∂xu)∂xH +R−1
e ∂xv · nfs

)
(15)

= O(ε2) ,

(p− 2R−1
e Dy,z(v))nfs = −

(
R−1

e ∇y,zu+ ε2R−1
e ∂xv

)
∂xH . (16)

Thanks to the relations (15) and (16), the pressure on the free surface satisfies the
following equality

p (nfs · nfs)− 2R−1
e Dy,z(v)nfs · nfs = ε2 (∂xH)2 (p− 2R−1

e ∂xu) = O(ε2) . (17)

3.2. First order approximation

As emphasized before in Section 2.3, when increasing the Reynolds number Re,
we observe instabilities at the pipe wall leading to turbulent flows. Assuming the
characteristic length of the thin unstable film is larger than the relative roughness of
the pipe, one can always assume some smallness of the friction law (see for instance
[16, 15]). In particular, it motivates, for large Reynolds number Re, the following
asymptotic assumptions:

R−1
e = εµ0, K = εK0 (18)

where µ0 is some viscosity constant and K0 is the asymptotic friction law

K0(u) =
√
n · n k(u)u . (19)

Under these conditions, the Archimedes principle is applicable and induces small
vertical accelerations. As a consequence, one can drop all terms of order O(ε2) in
Equations (10)–(12). Then, taking the formal limit as ε goes to 0, we deduce the
hydrostatic equations

∂x(uε) + divy,z(vε) = 0 (20)

∂t(uε) + ∂x(u
2
ε) + divy,z(uεvε) + ∂xpε = −sin θ(x)

F 2
L

+ divy,z

(µ0

ε
∇y,zuε

)

(21)

∇y,zpε =





0

−cos θ(x)

F 2
r



 (22)

25



Let us emphasize that even if this system results from a formal limit, we note its

solution (pε, uε, vε) due to the explicit dependency on ε in the term divy,z

(µ0

ε
∇y,zuε

)

in Equation (21). At zero order, this term will be precisely the friction at the wet
boundary through the condition (13). In particular, the boundary conditions write

• on the wet boundary; conditions (13)-(14) are

µ0

ε
∇y,zuε · n = K0(uε) +O(ε), t > 0, x ∈ (0, L), (y, z) ∈ Γb(t, x) . (23)

• on the free surface boundary; conditions (15)-(16) and (17) are

µ0

ε
∇y,zuε · nfs

ε = O(ε), t > 0, x ∈ (0, L), (y, z) ∈ Γfs(t, x) . (24)

Next, identifying terms at order
1

ε
in Equations (20)–(22), thanks to Equa-

tions (23) and (24), we obtain the so-called “motion by slices”

uε(t, x, y, z) = u0(t, x) +O(ε) (25)

for some function u0 = u0(t, x), by solving formally the Neumann problem for t > 0,
x ∈ (0, L)

{
divy,z (µ0∇y,zuε) = O(ε) , (y, z) ∈ Ω(t, x)
µ0∂nuε = O(ε) , (y, z) ∈ ∂Ω(t, x)

One one hand, the following approximation at first order holds

uε(t, x, y, z) ≈ uε(t, x)

where uε(t, x) =
1

|Ωε(t, x)|

∫

Ωε(t,x)

uε(t, x, y, z) dy dz is the mean speed of the fluid over

the wet section. Consequently, one can approximate at first order the non-linear term
as follows

u2
ε ≈ uε

2 . (26)

On the other hand, using the second component of Equations (22), we may write

∂zpε(t, x, y, z) = −cos θ(x)

F 2
r

+O(ε) .

Then, fixing y and integrating this equation for ξ ∈ [z,H(t, x, y)], keeping in mind
the identity (17), we obtain

pε(t, x, y, z) =
cos θ

F 2
r

(Hε(t, x, y)− z) +O(ε) .
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Moreover, using the first component of Equations (22) leads to

Hε(t, x, y) = Hε(t, x, 0) +O(ε) . (27)

As a consequence, we recover the classical hydrostatic pressure

pε(t, x, y, z) ≈ cos θ

F 2
r

(Hε(t, x, 0)− z) , (28)

Finally, in view of the the definition of the water elevation Hε (27), the wet section
is approximated at first order as follows, t > 0, x ∈ [0, L]:

Ωε(t, x) = {(y, z) ∈ R
2;α(x, z) 6 y 6 β(x, z) and 0 6 z 6 Hε(t, x, 0)} (29)

and the outward unit normal vector to the free surface nfs is now nfs
ε =

(
0
1

)

as

displayed on figure 3.

Figure 3: First order approximation of the wet area

In the sequel, due to its dependency at first order, we write Hε(t, x, y) by Hε(t, x).

3.3. The free surface model

By virtue of the relations (25)–(29), integrating Equations (20)–(22) over the
cross-section Ωp(t, x), the free surface model immediately follows.

First, let us recall that m = (y, ϕ(x, y)) ∈ ∂Ωp(x) stands for the vector ωm and

n =
m

|m| for the outward unit normal vector to the boundary Γb at the point m in

the Ωp-plane as displayed on figure 1(b).
Second, let us introduce A(t, x) and Q(t, x) the conservative variables of wet area

and discharge defined by the following relations:

A(t, x) =

∫

Ωε(t,x)

dydz (30)
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and
Q(t, x) = A(t, x)uε(t, x) (31)

where

uε(t, x) =
1

A(t, x)

∫

Ωε(t,x)

u(t, x, y, z) dydz

is the mean speed of the fluid over the section Ωε(t, x).

Equation of the conservation of the momentum and the kinematic bound-

ary condition

Let v be the vector field

(
v
w

)

. Integrating the equation of conservation of the

mass (9) on the set:

Ω(x) = {(y, z); α(x, z) 6 y 6 β(x, z), 0 6 z 6 ∞},
we get the following equation:
∫

Ω(x)

∂t(φ) + ∂x(φuε) + divy,z(φvε) dydz = ∂tA+ ∂xQ−
∫

∂Ωε(t,x)

(uε∂xm− vε) ·n ds .

(32)
Now, integrating Equation (9) on Ωε(t, x), we get:

∫ Hε(t,x)

0

∂t

∫ β(x,z)

α(x,z)

dydz + ∂xQ+

∫

∂Ωε(t,x)

(vε − uε∂xm) · n ds = 0

where ∫ Hε(t,x)

0

∂t

∫ β(x,z)

α(x,z)

dydz = ∂tA− σ(x,Hε(t, x))∂th

with σ(x,Hε(t, x)) is the width at the free surface elevation as displayed on figure 3.
Then, one has:

∂t(A) + ∂x(Q)−
∫

Γfs
ε (t,x)

(∂tm+ uε∂xm− vε) · nfs
ε ds

−
∫

Γb(t,x)

(uε∂xm− vε) · n ds = 0.
(33)

Keeping in mind the no penetration condition (6) and comparing Equations (32)
and (33), we finally derive the kinematic boundary condition at the free surface:

∫

Γfs
ε (t,x)

(∂tm+ uε∂xm− vε) · nfs
ε ds = 0 (34)

i.e.
∂tHε + uε(z = Hε)∂xHε − wε(z = Hε) = 0 .

Finally, gathering Equations (33) and (34), we get the equation of the conservation
of the mass:

∂t(A) + ∂x(Q) = 0. (35)
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Equation of the conservation of the momentum

In order to get the equation of the conservation of the momentum of the free surface
model, we integrate each term of Equation (21) over sections Ωε(t, x) as follows:

∫

Ωε(t,x)

∂t(uε)
︸ ︷︷ ︸

a1

+ ∂x(u
2
ε)

︸ ︷︷ ︸

a2

+divy,z (uεvε)
︸ ︷︷ ︸

a3

+ ∂xpε
︸︷︷︸

a4

dydz =

∫

Ωε(t,x)

− sin θ

F 2
L

︸︷︷︸

a5

dydz+

∫

Ωε(t,x)

divy,z

(µ0

ε
∇y,zuε

)

︸ ︷︷ ︸

a6

dydz .

By virtue of relations (25), (26) and (28), we successively get:

Computation of the term

∫∫∫

Ωε(t,x)

a1 dydz

The pipe being non-deformable, only the integral at the free surface is non zero
since ∫

Γb(t,x)

uε ∂tm · n ds = 0.

Thus, we get:

∫

Ωε(t,x)

∂t(uε) dydz = ∂t

∫

Ωε(t,x)

uε dydz −
∫

Γfs
ε (t,x)

uε ∂tm · nfs
ε ds.

Computation of the term

∫∫∫

Ωε(t,x)

a2 dydz

∫

Ωε(t,x)

∂x(u
2
ε) dydz = ∂x

∫

Ωε(t,x)

u2
ε dydz −

∫

Γfs
ε (t,x)

u2
ε∂xm · nfs

ε ds

−
∫

Γb(t,x)

u2
ε∂xm · n ds.

Computation of the term

∫∫∫

Ωε(t,x)

a3 dydz

∫

Ωε(t,x)

divy,z (uεvε) dydz =

∫

Γfs
ε (t,x)

uεv · nfs
ε ds+

∫

Γb(t,x)

uεvε · n ds.

Summing the result of the previous step a1 + a2 + a3, we get:

∫

Ωε(t,x)

a1 + a2 + a3 dydz = ∂t(Q) + ∂x

(
Q2

A

)

(36)

where A and Q are given by (30) and (31).
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Computation of the term

∫∫∫

Ωε(t,x)

a4 dydz

For the pressure term pε given by the relation (28), (t, x) fixed, we have:

∫

Ωε(t,x)

∂xpε dydz =

∫ Hε(t,x)

0

∫ β(x,z)

α(x,z)

∂xpε dydz

=

∫ Hε(t,x)

0

σ(x, z)∂xpε dydz

=

∫ Hε(t,x)

0

∂x (pεσ(x, z)) dz −
∫ Hε(t,x)

0

pε∂xσ(x, z) dz

= ∂x

∫

Ωε(t,x)

pεσ(x, z) dydz

−
∫ Hε(t,x)

0

pε∂xσ(x, z) dz − ∂xHε(t, x)pε|z=Hε(t,x)

Finally, we have:

∫

Ωε(t,x)

∂xpε dydz = ∂x

(

gI1(x,A)
cos θ(x)

F 2
r

)

− gI2(x,A)
cos θ(x)

F 2
r

(37)

where I1 is the hydrostatic pressure:

I1(x,A) =

∫ Hε(A)

0

(Hε(A)− z)σ(x, z) dz.

The term I2 is the pressure source term:

I2(x,A) =

∫ Hε(A)

0

(Hε(A)− z)∂xσ(x, z) dz.

which takes into account of the section variation through the term ∂xσ(x, ·).

Computation of the term

∫∫∫

Ωε(t,x)

a5 dydz

We have: ∫

Ωε(t,x)

g sin θ dydz = gA sin θ. (38)

Computation of the term

∫∫∫

Ωε(t,x)

a6 dydz

We have:
∫

Ωε(t,x)

divy,z

(µ0

ε
∇y,zuε

)

dydz =

∫

Γfs
ε (t,x)

µ0

ε
∇y,zuε · nfs

ε ds+

∫

Γb(t,x)

µ0

ε
∇y,zuε · n ds

(39)
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where

∫

Γfs
ε (t,x)

µ0

ε
∇y,zuε · nfs

ε ds = 0 due to the boundary condition (24). Using the

boundary conditions (23) and the approximation (25), the second integral writes

∫

Γb(t,x)

µ0

ε
∇y,zuε · n ds =

∫

Γb(t,x)

K0(uε) ds = AK(uε)

where

K(x, uε) = K0(uε)

∫

Γb(t,x)
ds

A
ds

with

∫

Γb(t,x)

ds is the wet perimeter Pm (i.e. the portion of the perimeter where the

wall is in contact with the fluid) and thus
A

∫

Γb(t,x)
ds

is nothing but the so-called

hydraulic radius. This quantity was introduced by engineers as a length scale for
non-circular ducts in order to use the analysis derived for the circular pipes (see
for instance [16, 17]). Let us outline that this factor is naturally obtained in the
derivation of the averaged model and holds for any realistic pipe or open channel
(see Remark 2.1).

Then, gathering results (35) and (36)–(39), we get the equation of the conserva-
tion of the momentum. Finally, multiplying by ρ0U

2/L , the shallow water equations
for free surface flows are:






∂t(A) + ∂x(Q) = 0

∂t(Q) + ∂x

(
Q2

A
+ gI1 cos θ

)

= −gA sin θ + gI2 cos θ − gAK(x,Q/A)
(40)

This model takes into account the slope variation, change of section and the
friction due to roughness on the inner wall of the pipe. This system was formally
introduced by the author in [7] and [3] in the context of unsteady mixed flows in
closed water pipes assuming the motion by slices that we have now justified here
with the friction term.

We have proposed a finite volume discretisation of the free surface model intro-
ducing a new kinetic solver in [2, 4] based on the kinetic scheme of Perthame and
Simeoni [12]. We have also proposed a new well-balanced VFRoe scheme [1]. These
numerical schemes have been validated in [4] in a channel with varying width on
a trans-critical steady state with shock. Several test cases have been passed with
success through comparison with an exact solution or a code to code comparison,
see for instance [1, 2].

4. Conclusions and perspectives

Finally, we have performed an asymptotic analysis of the three-dimensional in-
compressible Navier-Stokes equation with a general wall-law conditions including
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friction and free surface boundary conditions in the shallow water limit. We have
considered the three-dimensional incompressible hydrostatic approximation with fric-
tion boundary conditions and free surface boundary conditions and we have inte-
grated these equations along the Ω sections to get the one-dimensional free surface
model. In particular, we have shown that the free surface model (40) is an ap-
proximation of O(ε) of the hydrostatic approximation (20)–(22) and therefore of
the three-dimensional incompressible Navier-Stokes equations (10)-(12). Except the
three-dimensional model reduction to a one-dimensional one, we have shown how to
integrate correctly a general friction law into the model derivation. The next step
and the work in progress will consist in studying the rigorous limit.
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